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ABSTRACT 

It is not an easy task to be continually updated on what are the latest trends and 

searched areas in the world of medicine. Our review comes here to help by 

summarizing some recent advancements and main points of interest regarding ECG 

(electrocardiography) and AI (artificial intelligence) deployment in its 

interpretation. In our work we want to present the results of our research, expose 

popular themes that ejected among studies and introduce the reader to selected ML 

(machine learning) terminology used in the construction of AI algorithms. 

Moreover, we would like to discuss what might have been the recurring limitations 

of the reviewed works and speculate about which enhancements may benefit 

further papers. From 108 open-access articles published between 01-12-2024 and 02-

03-2025 we found 41 original research papers. We categorized them into five major 

categories: AI-ECG in risk stratification, quality of data and preprocessing in AI-

ECG, edge devices and telemedicine, AI-ECG algorithms general utilization and 

unclassified. The modern world is changing quickly, and new technologies like 

deep learning models will ultimately gain its significance in the art of medicine. Our 

task as physicians and scientists is to be aware of the recent technological 

achievements, try to familiarize with them and implement in our work, if it’s 

beneficiary. We hope that our review will be an inspiration for researcher to explore 

this promising area of modern science. 
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1. INTRODUCTION  

AI (artificial intelligence) is a trending topic, especially in the scientific area of 

interest. AI tools such as CNN (convulational neural network), ViT (vision 

transformer), RNN (recurrent neural network), LSTM (Long Short-Term Memory), 

Random Forest and others are involved in an increasing amount of scientific 

research (Kim & Lee, 2024). This does not exclude medicine. In pharmacology, 

especially in the drug combination prediction models, AI tools pose a 
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groundbreaking solution. Combining omics (i.e. biological data) and advanced prediction algorithm, AI improves the pace and 

effectiveness of multi-drug therapy discovery (Chen et al., 2025). Moreover, AI capabilities are increasingly used to analyze and classify 

complex medical data such as ECG recordings, as reflected by the number of scientific papers focusing on the use of AI in ECG. Recent 

ESC Guidelines regarding atrial fibrillation management devoted some attention to the use of big data and AI, primarily emphasizing 

the need to develop this line of research. (Van Gelder et al., 2024). This emphasizes the perspective nature of the issue we raised in the 

following review and is a signpost to the path of future medicine. 

 

 
Figure 1. PRISMA flow chart of selected studies 

 

2. METHODOLOGY 

The data for this review article were collected using the PUBMED browser. In the search, we used two keyword abbreviations used in 

the article title: “AI” AND “ECG”. Publication date included articles published between 01-12-2024 and 02-03-2025. We found 108 

open-access results with free full text from which we excluded: reviews (n=21), preprints (n=3), clinical trials (n=2) and, due to eligibility 

criteria for full text, non-ECG or vaguely topic-related studies (n=36), as well as papers, where AI or ECG were used with other 

meaning (n=5). That way, we ended up with 41 original papers presenting different approaches to AI utilization in ECG analysis and its 
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usage in clinical practice. In our reviewing process, we divided the results into five major categories: AI-ECG in risk stratification 

(n=25), quality of data and preprocessing in AI-ECG (n=5), edge devices and telemedicine (n=5), AI-ECG algorithms general utilization 

(n=3) and unclassified (n=3). Methodology of our research is summarized in the provided PRISMA flow chart (Figure 1). 

 

3. RESULTS AND DISCUSSION 

3.1 AI-ECG in risk stratification 

The most prevalent utilization of artificial intelligence algorithms addressed various risk assessing models in which AI-ECG played a 

role as a sole risk assessing tool or with a combination of clinical data. We found 23 papers focused on the topic. Most of them touched 

the problem of atrial fibrillation (7 research studies).  

Jabbour et al., (2024) created an AI-ECG model using ResNet 50 (Residual neural network), a complex deep learning architecture 

operating on visual data combined with an XAI (explainable artificial intelligence) of TensorFlow 2.0 Gradient Type (which highlighted 

sections of ECG chart which contributed the most to ResNet 50 analysis outcome) to calculate risk of developing atrial fibrillation (AF) 

in the future among 145 323 patients with no history of AF in the past, have not undergone any cardiac surgery within 30 days of 

assessment and presented with sinus rhythm ECG. AI-ECG analysis where compared to four different clinical risk scores (of which 

ultimately selected one was CHARGE-AF score) and polygenic score (PGS). According to the study AI-ECG model outperformed both 

clinical risk score and PGS scores. It reached an AUC-ROC (area under the receiver operating characteristic curve) of 0.78 compared to 

accordingly 0.62 and 0.59 AUC-ROC scores for best clinical risk score and PGS. Surprisingly, a combination of AI-ECG, clinical score 

and PGS did not ameliorated the AUC-ROC (=0.77). Although, it improved “goodness of fit”, compromising be-tween explainability 

and statistic values scores. 

An ECG analysis model was created by Jin et al., (2025) on 318 321 patients with normal sinus rhythm (NSR). It served for detecting 

presymptomatic changes that may predispose to PAF (paroxysmal AF). It assessed 18 clinical parameters and a 12-lead ECG. The 

authors combined 50-layer 1D-CNN (as one of a default architecture for visual data analysis), residual blocks (to minimize vanishing 

gradient problem), batch normalization (to reduce internal covariate shift problem), rectified linear activation (ReLU – for enhancing 

complex non-direct reasoning), stride 2 in CNN (for downsampling), max pooling (for overfitting reduction), concatenation (for 

combining feature vectors) softmax (to convert probability into decision) and some other AI tools (Table 1). Thanks to layer-wise 

relevance propagation (LRP), a tool for XAI, the most significant relationship was established between NSTTA (non-specific ST-T 

segment changes) and PAF. The authors concluded, that despite the limitations to extrapolate the use of the model resulting from the 

methodology of the study itself, perhaps such a model or a similar one may be used in the future for proactive monitoring of patients 

with presymptomatic PAF according to the algorithm - it may allow earlier diagnosis of the disease and increase the chances of 

moderation and possibly accelerate the implementation of anticoagulant treatment based on CHA2DS2-VA score, reducing the risk of 

ischemic cerebral events.  

 

Table 1. Basic AI and ML terminology grouped by their function.  

ECG data Preprocessing AI/ML Models Enhancements Explainability (XAI) 

.dat, .mat Wavelet CNN Batch Normalization SHAP 

images Pan-Tompkins ResNet ResNet LIME 

.hea Graphs RF Max Pooling Grad-CAM 

.csv STNF Transformers Dropout Int. Gradients 

.xml  ViT   

  RNN, LSTM   

ECG- electrocardiogram, STNF- short-time Fourier transform, CNN – convolutional neural network, RF – Random Forest, ViT- vision transformer, RNN 

– recurrent neural network, LSTM – Long Short-Term Memory, ResNet residual neural network, XAI – explainable AI, SHAP - Shapley Additive 

Explanations, LiME - Local Interpretable Model-agnostic Explanations), Grad-CAM -  Gradient-weighted Class Activation Mapping 

 

Another study regarding AF was published by Khan et al., (2025) 911 patients with implantable cardiomonitor (ICM) and 

symptomatic heart failure were searched for incidence of AF. Input data consisted of two-dimensional (2D) ECG charts and clinical 

metadata, which were analyzed by a 6-layer CNN. The researchers in their work assumed that the risk of AF calculated by the 

algorithm at over 90% is a true positive result, indicating very high confidence in the AI-ECG model. 
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Yao et al., (2024) published a study, where the researchers involved four features to base their prognostic tool (in a population of 

AVIC study) for AF early detection, which were three non-AI related criteria of: clinical risk scores like CHARGE-AF, polygenic risk 

score, and NT-proBNP and FGF-23 proteins level measured, and an AI-ECG charts analyzed by 1D-CNN algorithm which assessed AF 

risk using regularized logistic regression model. Authors stated that combining these four factors in risk assessment improved the 

accuracy and recall in the prognostic model. They concluded that it presents a promising idea for further studies in the area of primary 

prophylaxis and personalized medicine. 

An interesting approach was presented by Lin et al., (2025) who developed a knowledge-embedded (i.e. based on scientific 

consensuses) multimodal (i.e. using various methodology) pseudosiamese (i.e. combining two complementary neural networks in one) 

model for detecting AF. Raw ECG signals (from Physionet databases: MIT - BIH AF dataset, CinC 2017 and Chapman dataset) ready 

for interpretation by 1D-CNN were used as input da-ta. It was analyzed by 1D-CNN ResNet_Wang and transformed into GAF 

(Gramian Angular Field) images by the GASF (Gramian Angular Summation Fields) algorithm interpreted by 2D-CNN, which was a 

2D-CNN ResNet 18. Despite the apparent secondary nature of such a solution, it combined both models’ advantages: the one-

dimensional (temporal) model focuses more on the interpretation of data in the context of temporal information, ergo, the rhythm itself, 

while the two-dimensional (spatial) model allows for more focus on the interpretation of the image, morphology and interpoint 

relations. However, the results were not similar between the analyzed databases, which underscores the significance of preprocessing 

and data standardization. 

Tao et al., (2024) in their retrospective study, utilized AI to try to identify left atrium low-voltage areas (LA-LVA) in 1133 patients 

who underwent radiofrequency ablation and compared sole CNN-ECG model, clinical data risk scores (DR-FLASH and APPLE) and a 

combination of both (in a CNN-RF multimodal model). The authors found the combined analysis to reach the highest degree of 

accuracy. Gradient-weighted Class Activation Map-ping (Grad-CAM) served as an XAI for highlighting regions of ECG which were 

essential for model interpretation outcome. 

An original approach demonstrated that She et al., (2025) tried to construct an AI-ECG model for assessing the risk of reoccurrence 

of AF among postablation patients based on their ECG charts performed after ablation. They addressed the problem of how to gain 

clinicians trust toward AI analysis outcomes. After theoretical consultations with medical professionals, the authors chose a model 

where manually extracted features from 503 postablation patients’ ECG charts were presented to a Cox regression AI model with 

SHAP (Shapley Additive Explanations) XAI.  

Although the model did not reach high AUC-ROC and sensitivity, the discussion contained fascinating section engaging potential 

users of such software. Cardiologists, who provided extensive feedback, constituted the basis for refining the model in future studies. 

They underscored an urging need for AI cause and effect reasoning, which would gain more confidence in the use of AI analyses in 

clinical work by practicing physicians. The paper poses an insight into professionals’ perspective and expectations toward further AI 

studies in medicine and its implementation in daily practice. 

Some other authors decided to employ AI-ECG architectures for assessing cardiovascular risks. In a study conducted by 

Oikonomou et al., (2025), 1550 patients with a diagnosis of breast cancer or non-Hodgkin lymphoma, previously without 

cardiomyopathy, before initiating anticancer therapy with anthracyclines or trastuzumab, were classified into risk groups of 

developing cardiac dysfunction in the course of the treatment. 12-lead ECG were performed before initiating treatment, converted to 

300 by 300 pixel images. Then analyzed by EfficientNet B3 CNN model with an XAI (Gradient-weighted Class Activation method). The 

algorithm assessed risk of early chemotherapy-related myocardial dysfunction with high accuracy.  

In another study regarding cardio-oncology and AI-ECG, Ayoub et al., (2024) used Tensor-Flow to find a suitable AI to evaluate 

risk of MACE (major adverse cardiovascular events) and myocarditis. They analyzed data from 2258 cancer patients before receiving 

immune checkpoint inhibitor therapy. They decided to implement a 5-blocked 1D-CNN with a ReLU activation and a SHAP XAI. The 

results concluded that more valuable for risk outcome were 23 descriptive data attached to the analysis than AI-ECG model. 

Another popular topic among studies conducted in recent time was estimating biological age or gender by evaluating ECG by 

various AI algorithms (Liu et al., 2025; Hempel et al., 2025; Singh et al., 2025; Sau et al., 2025; Adel et al., 2024).  Using different AI tools, 

the researchers investigated whether the AI-ECG-based biological age or gender discrepancy adds new predictive value that clinicians 

can incorporate into existing clinical risk scores. Unfortunately, among the five studies listed, only two used XAI (variational 

autoencoder with CNN and Integrated Gradients with a post hoc attribution method). 

Apart from AF, Cardiooncology and Demographics, AI in ECG interpretation was also employed in different topics, some being 

less popular, but clinically significant. Latest papers have also addressed such issues as cardiac amyloidosis, Brugada syndrome, 
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pulmonary hypertension, progression of heart failure, hypertension, cardiac wall motion abnormalities, cardiovascular risk in athletes 

and overall mortality (Amadio et al., 2025; Randazzo et al., 2025; Kishikawa et al., 2025; Kim et al., 2025; Sau et al., 2025; Rogers et al., 

2025; Nechita et al., 2025; Sau et al., 2024). Populations in these studies varied from 210 to 189,539 patients. The most prevalent AI 

architecture used was CNN models. However, some of researchers decided to experiment with the AI used in their studies and 

implemented solutions such as Vit (vision transformer) or a random forest classifier and a complex multimodal AI-ECG (1D-CNN + 

transformer + triplet loss). Two of them utilized XAI (variational autoencoder and SHAP). In all of the works, AI-ECG analysis played 

as a promising statistic biomarker, which can ameliorate the prognostic algorithms alone or in combination of clinical data.  

 

 
Figure. 2 – Top 3 features in Yeh. et al, study for CAD risk prediction in both sexes (Yeh et al., 2024); A) P peak to T peak slope in lead 

V6; B) P peak to T peak amplitude difference in lead V6; C) P peak to T peak slope in lead V5 

  

A different problem occurred in another study. Butler et al. compared two AI-ECG models’ accuracy on data from around 50 000 

patients for fatal coronary heart disease risk prediction (Butler et al., 2024). Surprisingly, their work concluded that a ResNet 1D-CNN 

model reached a higher AUC when analyzing only lead I ECG, as opposed to a 12-lead ECG. This conclusion gives a fascinating insight 

into utilization of AI into biometrical analysis. Moreover, it underscores the recurring problem in deep learning of data noise overload. 
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In a study group from Taiwan, Yeh et al., (2024) investigated how well an AI-ECG tree-based model of XGBoost (eXtreme Gradient 

Boosting) with SHAP XAI performs in coronary artery disease (CAD) risk assessment. Scientists preprocessed approximately 5000 12-

lead ECGs in raw .xml signal format. After removing noise, drift, and marking fiducial points (i.e., P, Q, R, S, T), the researchers 

extracted the data into a numerical form (using wavelet transformation), which could be analyzed by XGBoost. AI-enhanced ECG 

assessed CAD risk with 61-66% accuracy and 79-83% sensitivity. The authors speculated that AI-ECG may develop as an alternative for 

myocardial perfusion scynthygraphy with thalium 201. The paper presented instances where the AI-ECG model predicted a positive 

coronary angiography (CAG) result preceded by a negative scynthygraph. Interestingly, the algorithm identified the most significant 

features out of 561 extracted ECG elements for AI-ECG CAD risk stratification (Figure 2). Moreover, such characteristics have never 

occurred in ECG traditional interpretation guidelines before. 

 

3.2 Preprocessing tools 

An interesting section in the results of our research presents works regarding preprocessing and data quality. Chen et al., (2024) 

presented an unconventional, yet very innovative approach. The researchers ameliorated CNN performance of ECG interpretation by 

incorporating clinical data into ECG record via ECG coloring technology. Imposing demographic information onto patients’ ECG chart 

resulted in a substantial rise in the AUC result. It detect-ed AF in ECG by 7,6% better compared to the AI-ECG model using only the 

original signal value.  

A study group from Korea focused on the very fundamental aspect of the ECG data collection. They proposed a preprocessing tool 

for graph structure-based data augmentation, which reflects the concept of three-dimensional data of the heart's electric potential (Kim 

& Lee, 2024). The researchers implemented their idea into ResNet and DenseNet models of ECG interpretation. As a result, it improved 

the F1 score by 1,44%. 

Kwon et al., (2025) investigated yet another new method of presenting data to the AI deep learning models. By preprocessing ECG 

signals with polar transformations of short-time Fourier transform (STNF) spectrograms the authors could present preprocessed 30-

second ECG charts acquired from open-source PhysioNet online database to the CNN (MobileNet, ResNet, DenseNet) prediction 

model of AF. The algorithm reached comparable to previous works results, but provided longer ECG chart duration analysis. Thanks 

to the above, such developed models may be a better choice regarding the nature of diagnosing supraventricular arrhythmia. 

A promising insight introduced researchers from Israel and Japan, who developed an ECG analysis model that allows for the 

interpretation of even poor quality ECG images (taken with a smartphone, with shadows, and with a random background) - which is 

supposed to improve its usability in clinical practice (Gliner et al., 2025). 

A completely different approach presented a study group of Galanty et al., (2024) who, using the BEAMRADS protocol (“Bias 

Evaluation And Monitoring for Transparent And Reliable Medical Datasets”), assessed the quality of databases available on platforms 

such as PhysioNet (ECG) and Grand Challenge (MRI images and Color Fundus Photography). The authors emphasized that the 

published databases contained specific errors (in varying percentages) that could affect the incorrect training (bias) of AI algorithms on 

these datasets. The most common errors found are listed in Table 2. The authors underscored the urgent necessity for more strict 

quality checks by data collecting organizations. 

 

Table 2. Most common errors recurring in the open-source medical databases such as PhysioNet and Grand Challenge 

Identified databases’ common quality issues 

1) Annotations problem – rarely reported percentages of misdiagnosis in supplied annotations 

2) Shortage of transparent inclusion criteria of patients 

3) Lack of demographic metadata of the cohorts – limits extrapolation to diverse populations 

4) Insufficient data regarding the collection process and preprocessing tools used 

5) No descriptions of dataset limitations – scarce data on underrepresented patients 

6) Inadequate or inconsistent implementation of existing data collection standards such as BIAS or datasheets for datasets 

 

3.3. Algorithms competing with humans 

An extensive study by Johnson et al., (2025) compared the performance of AI to 167 ECG technicians in screening 10-14 day ECG 

Holter. The study group consisted of 14,596 patients with the most common monitoring indications of palpitations, syncope, dizziness, 

and paroxysmal AF suspicion. The aim of the screening was to detect critically important ECGs for physician review. The authors 
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designed the model (DeepRythmAI for Autonomous Analysis of Rhythm Investigation, ie, “DRAI MARTINI”) in cooperation with 

Medicalgorithmics®, a Polish software company. AI was less likely to miss diseased ECGs but more likely to report pathology in 

healthy participants compared to the performance of qualified ECG technicians. F1 was similar in both groups. The researchers suggest 

that their tool can safely replace technicians, which may herald a spectacular breakthrough in the field of AI-ECG study. 

Other authors decided to assess the ECG interpreting capabilities of AI-LLM (Large Language Model) like popular ChatGPT and 

BioMed GPT-LM-7B (Çamkıran et al., 2025; Yang et al., 2025). ChatGPT-based algorithms achieved much worse results (accuracy 

ranging between 57-62%) when interpreting 107 ECG charts. In comparison, two cardiologist professionals reached an accuracy of 

92,52%. Also BioMed GPT-LM-7B with ResNet-18 CNN preprocessing model, reached an unsatisfactory F1 (0.5). It may be attributed to 

a prevalent and urgent problem in AI-LLM models, known as “hallucination” (i.e., creating made-up facts and answers), which could 

be a considerable limitation in deploying such solutions in further studies. 

 

3.4. Digital wearable health technologies and telemedicine 

Among reviewed studies, a significant portion of works regarding edge devices (ED) and edge intelligence technology drew our 

attention. Most of them were sponsored, albeit they presented a different perspective from the rest of the articles. To gain a 

comprehensive understanding of recent study trends, it is also beneficial to take a look at this area of study. A substantial portion of 

researchers noticed an increasing need to implement more complex AI solutions into portable devices assessing ECG charts as they 

emerged recently as a possible first-line screening tool in detecting arrhythmia (especially early AF detection). These trends created a 

need for better hardware in the limited physical space of an edge device. To solve this problem, An et al., (2024) studied a concept of 

Knowledge Distillation, i.e. adjusting edge devices AI to big model (as a teacher-student relation). They tried to compress algorithms to 

detect 11 different arrhythmia in an ECG chart. In this study, the authors trained a device imitating an ED (technical specifications: 

STM32F429 microcontroller characterized by ARM Cortex-M4 core, 2 MB of flash, a maximum clock frequency of 180 MHz and 256 kB 

RAM) and reached 96% accuracy, whereas “the teacher” AI model (big ResNet, LSTM and SENet models) reached 97% accuracy. 

Second work implemented a solution of connecting edge device of Kardia Mobile to a commercially developed end-to-end Willem AI 

to ameliorate AF detection, reaching above 96% accuracy (Guio et al., 2025). 

Other studies regarding ED and AI-ECG, utilized various devices for miscellaneous tasks. Disrud et al., (2025) developed a 12-lead 

ECG monitoring device as a telehealth diagnostic tool in cooperation with patients, but met with a lot of technical limitations. Blok et 

al., (2025) studied ED smart band with photoplethysmography technology's ability to detect early AF. Smiley and Finkelstein (2025) 

using a sample of only 27 patients, developed an AI model to assess the current level of physical exertion. It used a single-lead ECG 

measured from a device worn on the chest and a pulse oximeter on the wrist. Finnish Kubios Heart Rate Variability software (HRV) 

and LSTM model processed the raw ECG data to reach F1 of 91,7% when compared to patients’ Borg scale score. Another approach 

was presented an Italian study group. The researchers investigated the possibility of a non-invasive screening for the risk of type 1 

diabetes based on single-lead ECG charts assembled with a wearable device (n=27 patients) (Gragnaniello et al., 2025). Microprocessor 

converted the signal into spectrograms for analysis by 1D-CNN. The model reached F1 score of 0.9. 

 

3.5. Miscellaneous studies 

Three studies could not be categorized into other subgroups, so we decided to enclose them separately. Maleki Lonbar et al., (2024) 

developed a model for biometric recognition of a person based on the ECG signal. For noise reduction they used Pan-Tompkin’s 

algorithm and Wigner-Ville distribution to convert signals into image. An advanced CNN model of GoogLeNet analyzed the data and 

reached almost 100% sensitivity and specificity. Choudhury et al., (2025) studied single-lead ECG data correlation with sleep apnea 

episodes using three databases with several-hour ECG recordings from 113 patients. After data preprocessing, the CWT (continuous 

wavelet transform) model created standardized scalograms with compressed visual information from multi-hour ECG recordings and 

subjected them to CNN analysis (GoogLeNet). The LIME model (Local Interpretable Model-agnostic Explanations) served as an XAI. 

Some correlations between apnea episodes and ECG events like slowing of the rhythm, QT prolongation, cases of ST depression and 

cases of provoking an AF episode were found. It provided a fascinating insight into pathophysiology in the study.  

Huang et al., (2025) presented another interesting work. The AI-ECG model of Cat-Boost, analyzed ECG data after Philips DXL 

algorithm preprocessing. It predicted Left Ventricle Hypertrophy better than popular ECG criteria like Sokolov-Lyon, Cornell product, 

Peguero-Lo Presti or Framingham criterion, achieving AUC of 0,795 in the validation sample (n=8403). The algorithm highlighted some 
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ECG features that were previously rarely reported in traditional ECG criteria. An example is the peak-to-peak QRS complex amplitude 

in aVF lead. These findings constitute an interesting point for further studies.  

Although some authors, especially when it comes to the models calculating the probability of the disease based on the ECG, tend to 

overestimate the significance of their analysis in their article’s discussion section, it is worth mentioning that the features that their 

algorithms extracted from the raw ECG signals or visual data are a fascinating field to base future studies upon.  

In our opinion many publications focused more on exhibiting sole statistical correlation rather than giving a pathophysiological 

explanation on why their AI models made the stratification decisions that they did. An interesting tool that was used to mitigate this 

effect in some of the studies were LIME (Local Interpretable Model-agnostic Explanations) and SHAP. They are a software methods (ie. 

an XAI) created to help understand how complex AI models make their decisions. They underscored which features are the most 

important in the analysis. It is a promising step towards making current AI deployment studies more transparent and scientific, 

thereby earning more trust among clinicians and academicians in such solutions. A fascinating and deep insight into this matter is 

made in one Japanese study about CNN work, whose task was to rank risk in postablation AF patients, where a significant section is 

dedicated to covering clinicians’ feedback on how they assess the results of the study, do they trust the algorithm and how prone are 

they to implement such an augmentation of risk stratification clinical assessment in their future work.  

A big part of the participants expressed that although results seem to be promising, they lack the conclusive evidence-based 

argument why clinicians should give credence to these tools as they support their decisions with vague logic reasoning. Another 

noteworthy study addressed the issue of maintaining quality in databases used to train AI tools in medicine. In our opinion too little 

credit is being given to how the data are collected. An urging issue is to create direct guidelines on how to construct such databases. 

Open-source websites that currently dominate this area should consider revising their submission policies to help mitigate this 

problem. 

 

4. CONCLUSIONS 

The modern world is changing rapidly, and new technologies, such as deep learning models, will ultimately gain significance in the 

field of medicine. Our task as physicians and scientists is to be aware of recent technological achievements, familiarize ourselves with 

them, and implement them in our work if beneficial. We hope that our review will be an inspiration for researchers to explore this 

promising area of modern science. 
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