INDIAN JOURNAL OF ENGINEERING 19(51), 2022 ### To Cite: Ozioko FC, Ukpaka CP, Ikenyiri PN. Comparative Investigation on the Rate of Oil Particles Sedimentation in Stagnant Water Environment. Indian Journal of Engineering, 2022, 19(51), 279-293 ### Author Affiliation: Research Student: Department of Chemical/Petrochemical Engineering, Rivers State University Port Harcourt, PMB 5080, Rivers State, Nigeria. 2 Professor: Department of Chemical/Petrochemical Engineering, Rivers State University Port Harcourt, PMB 5080, Rivers State, Nigeria. Email:chukwuemeka24@yahoo.com ³Senior Lecturer: Department of Chemical/Petrochemical Engineering, Rivers State University Port Harcourt, PMB 5080, Rivers State, Nigeria. ### Peer-Review History Received: 27 April 2022 Reviewed & Revised: 29/April/2022 to 04/June/2022 Accepted: 05 June 2022 Published: 09 June 2022 ### Peer-Review Model External peer-review was done through double-blind method. © The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)., which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Ozioko FC1, Ukpaka CP2, Ikenyiri PN3 # **ABSTRACT** The sedimentation of total dissolved solid (TDS) in stagnant water media was studied theoretically by comparing the Ukpaka's model with Newton's Law and Stokes's law through mathematical application. Two tanks of equal capacity were filled to 1.5m3 volumes of fresh water and salt water respectively. Six control valves were fitted at equal intervals along the tanks' depth, where samples were collected for analysis of physicochemical parameters. Also, the Stokes' and Newton's laws of particles falling under motion in a fluid were modified to study the rate of sedimentation of TDS sediments. The models were compared with rate of sedimentation developed by Ukpaka. Results showed that crude oil has significant impact on the properties of fresh and salt water immediately after pollution. The impact of crude oil was more in the fresh water compared to salt water media. The rate of oil sediment decreased with increased in depth, but the model developed by Ukpaka slightly performed better than the modified Stokes' and Newton's laws, which also compared well with the suspended solid measured from the experiment. However, either of the models can be used to study the rate of oil sediment in stagnant water media. **Key words:** Comparative, investigation, rate, oil, particles, sedimentation, stagnant water environment # 1. INTRODUCTION When crude oil spills cause a wide range of difficulties, it is vital to design a prediction model that will help to degrade and salvage impacted areas. Because of the numerous issues caused by crude oil spills, it is vital to design a prediction model that will aid in the degradation of the affected region and the removal of the obnoxious threat. In this paper, a predictive model of crude oil degradation and sedimentation in stagnant water media is developed [1-5]. The influence of dispersion and diffusion of crude oil in stagnant water media is also studied on overall degradation. Consequently, the breakup of the oil and its transport to the water column in addition to the depth of its diffusion are equally the focus of the study [6-8]. Hydrocarbon pollution as a result of petrochemical sector activities is one of today's main environmental issues. Accidental discharges of petroleum products are a major environmental problem [9]. Hydrocarbon components have been identified as Cacinogens and neurotoxic organic pollutants [10]. Removing hydrocarbons from contaminated areas via mechanical and chemical methods is generally futile and expensive [11]. These contaminated locations might benefit from bioremediation since it's cost-effective and can convert organic toxins into carbon dioxide, water, inorganic chemicals and cell protein or break down complex organic compounds into simpler ones by biological agents such as microorganisms [12-16]. A more accurate predictive model must take into account factors such as sedimentation and spreading, which are functions of physical properties such as depth and time in the aquatic environment, as well as oil quality and quantity when developing remediation procedures in order to increase remediation efficiency [17-20]. The aim of this research work is to examine the changes in concentration and sedimentation rate of crude oil in stagnant water media with respect to position and time due to determining factors such as diffusion, dispersion and microbial actions [21-23]. ## 2. MATERIALS AND METHODS ### Rate of Oil Particles Sedimentation down the Column The rate of oil particle settling down the column of the stagnant water was studied using a model. First, a general expression by Ukpaka [18] on sedimentation of suspended solid particle, as influenced by continuous discharge of waste in pond system, was modified based on the Stokes' and Newton's laws of particles falling into fluid system. According to Ukpaka [18], the rate of sedimentation is determined as: $$R_s = \frac{v_s}{z} C_{ss} \tag{1}$$ After several mathematical relations with respect to influential parameters, Ukpaka [18] finally expressed the rate of sedimentation as: $$R_{s} = \left[U - \exp \left(\frac{1}{gS_{o}z} \cdot \frac{v_{s}^{2}}{1 - v_{s}} \right) \right] \frac{v_{s}}{z}$$ (2) where: R_s = Rate of settling of particle (mg/l.day) U = Rate of momentum transfer (kg.m/day) C_{ss} = Concentration of suspended solids (mg/l) $g = \text{Acceleration due to gravity (m/s}^2)$ S_o = Below the surface water slope (-) z = Height of sample point from water surface (m) v_z = Settling velocity (m/s) In this study, we modified equation (1) with the assumption that the oil particle falling in the stagnant water obeyed two laws: Stokes' and Newton's laws. ### Rate of Sedimentation Based on Stokes' Law The settling velocity in this case, was developed based on the concept of Stokes' law, which is expressed as: $$v_s \propto gD_p^2 \left(\frac{\rho_p - \rho_f}{18\mu}\right) \tag{3}$$ Removing the proportionality, we obtain as follows: $$v_s = k_F g D_p^2 \left(\frac{\rho_p - \rho_f}{18\mu} \right) \tag{4}$$ Since the oil volume is measurable, the particle diameter, D_p was expressed in terms of oil particle volume. Thus, the oil particle volume is assumed to be spherical in shape. The volume of sphere is expressed as: $$V = \frac{\pi D_p^3}{6} \tag{5}$$ Hence, in terms of particle diameter, equation (5) can be stated as: $$D_p = \left(\frac{6V}{\pi}\right)^{1/3} \tag{6}$$ Substituting equation (6) into (3) gives: $$v_s = k_F g \left(\frac{6V}{\pi}\right)^{2/3} \left(\frac{\rho_p - \rho_f}{18\mu}\right) \tag{7}$$ After simplification and substitution of equation (7) into (1), we obtained: $$R_s = K_F g V^{2/3} \left(\frac{\rho_p - \rho_f}{18\mu} \right) \frac{C_{TSS}}{z} \tag{8}$$ ### Rate of Sedimentation Based on Newton's Law Expressing the settling velocity in terms of Newton's law of particle falling in a fluid, we modified the settling velocity as: $$v_s \propto \left[g D_p \left(\frac{\rho_p - \rho_f}{\rho_f} \right) \right]^{1/2} \tag{9}$$ Removing the proportionality, we obtain as follows: $$v_s = k_F^* \left[g D_p \left(\frac{\rho_p - \rho_f}{\rho_f} \right) \right]^{1/2} \tag{10}$$ Unlike Stokes's law, the particle settling velocity does not depend on the fluid viscosity in the Newton's law. Again, in terms of particle diameter, Equations (5) and (6) are combined and substituted into Equation (3.56) to give: $$v_s = k_F^* \left(\frac{6V}{\pi}\right)^{1/6} \left[\left(\frac{\rho_p - \rho_f}{\rho_f}\right) g \right]^{1/2}$$ (11) Again, simplification and substitution of equation (11) into (1) gives: $$R_s = K_F^* V^{1/6} \left[\left(\frac{\rho_p - \rho_f}{\rho_f} \right) g \right]^{1/2} \frac{C_{TSS}}{z}$$ (12) where: R_s = Particle settling rate (mg/l.day) $C_{\mathit{TPH}} = \mathrm{TPH} \, \mathrm{concentration} \, (\mathrm{mg/l})$ v_s = Settling velocity (m/s) z = Height of sample point from water surface (m) $V = \text{Volume of oil (m}^3)$ D_n = Oil particle diameter (m) ρ_p = Oil particle density (kg/m³) ρ_f = Fluid density (kg/m³) μ = Viscosity of fluid (kg/m.s) g = Acceleration due to gravity (m/s²) K_F and K_F^* = Constants of settling velocity of modified Stokes and Newton's equations # 3. RESULTS AND DISCUSSION The rate of sedimentation TPH content in the water were studied using mathematical models. ### Rate of Sedimentation along the Tank Depth The rate of oil sediment in stagnant fresh water and salt water media models was studied in terms of the measured total suspended solids (TSS). The rate of sedimentation over the investigation period for the three models was compared as shown in Figures 1 to 14 for the various weeks of the analysis. Figure 1: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 1 Figure 2: Rate of Sedimentation in Salt Water along the Tank Depth for Week 1 Figures 1 and 2 showed the rate of sedimentation of suspended solids in stagnant fresh water and salt water polluted by crude oil, respectively at first week (day 1). From the profiles, the rate of sedimentation decreased with increase in depth. The results obtained within the first week of investigation for fresh water showed that the rate of sedimentation obtained from Ukpaka model decreased from 0.926mg/l.day at 0.25m depth to 0.037mg/l.day at 1.25m depth, while the rate of sedimentation obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.824mg/l.day at 0.25m depth to 0.033mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation obtained from Ukpaka model decreased from 1.319mg/l.day at 0.25m depth to 0.054mg/l.day at 1.25m depth, while the rate of sedimentation obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.989mg/l.day at 0.25m depth to 0.040mg/l.day at 1.25m depth and 0.763ppm/day at 0.25m depth to 0.031mg/l.day at 1.25m depth respectively. Comprehensive result for fresh and salt water media is shown in Table 17B of Appendix. The model modified using Newton's law (model 2) has the lowest rate of sedimentation, while the model developed by Ukpaka has the highest rate of sedimentation. Despite the slight difference in the model performances, the rate of sedimentation obtained from the models implies that either of the models can be used to study the rate of oil sediment in stagnant water media. The trends for rate of sedimentation obtained in this study agreed with the work of Ukpaka [18]. Figure 3: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 2 Figure 4: Rate of Sedimentation in Salt Water along the Tank Depth for Week 2 Figures 3 and 4 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively for week 2 (Day 14). The rate of sedimentation decreased with increase in depth. In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 14 decreased from 1.129mg/l.day at 0.25m depth to 0.096mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 1.005mg/l.day at 0.25m depth to 0.104mg/l.day at 1.25m depth and 0.668mg/l.day at 0.25m depth to 0.080mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation from Ukpaka model decreased from 1.609mg/l.day at 0.25m depth to 0.139mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 1.207mg/l.day at 0.25m depth to 0.104mg/l.day at 1.25m depth and 0.931mg/l.day at 0.25m depth to 0.080mg/l.day at 1.25m depth respectively. Comprehensive results for fresh and salt water media are shown in Table 18B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka model. Figure 5: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 4 Figure 6: Rate of Sedimentation in Salt Water along the Tank Depth for Week 4 Figures 5 and 6 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively for week 4. The rate of sedimentation also decreased with increase in depth at week 4 (Day 28). In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 28 decreased from 1.026mg/l.day at 0.25m depth to 0.241mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law and Newton's law decreased from 0.913mg/l.day at 0.25m depth to 0.215mg/l.day at 1.25m depth and 0.607mg/l.day at 0.25m depth to 0.143pmm/day at 1.25m depth respectively. For salt water at day 28, the rate of sedimentation from Ukpaka model decreased from 1.462mg/l.day at 0.25m depth to 0.348mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law and Newton's law decreased from 1.097mg/l.day at 0.25m depth to 0.143mg/l.day at 1.25m depth and 0.845mg/l.day at 0.25m depth to 0.201mg/l.day at 1.25m depth respectively. Comprehensive result for fresh and salt water media is shown in Table 19B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka. Figure 7: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 6 Figure 8: Rate of Sedimentation in Salt Water along the Tank Depth for Week 6 Figures 7 and 8 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively at week 6 (Day 42). The rate of sedimentation also decreased with increase in depth at week 6. In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 42 decreased from 0.888mg/l.day at 0.25m depth to 0.281mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.791mg/l.day at 0.25m depth to 0.250mg/l.day at 1.25m depth and 0.525mg/l.day at 0.25m depth to 0.166mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation from Ukpaka model at Day 42 decreased from 1.266mg/l.day at 0.25m depth to 0.405mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.950mg/l.day at 0.25m depth to 0.304mg/l.day at 1.25m depth and 0.732mg/l.day at 0.25m depth to 0.234mg/l.day at 1.25m depth respectively. Comprehensive result for fresh and salt water media is shown in Table 20B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka. Figure 9: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 8 Figure 10: Rate of Sedimentation in Salt Water along the Tank Depth for Week 8 Figures 9 and 10 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively for week 8. The rate of sedimentation also decreased with increase in depth at week 8 (Day 56). In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 56 decreased from 0.772mg/l.day at 0.25m depth to 0.287mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.688mg/l.day at 0.25m depth to 0.255mg/l.day at 1.25m depth and 0.457mg/l.day at 0.25m depth to 0.170mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation from Ukpaka model decreased from 1.152mg/l.day at 0.25m depth to 0.413mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law (model 1) and Newton's law (model 2) decreased from 0.864mg/l.day at 0.25m depth to 0.310mg/l.day at 1.25m depth and 0.666mg/l.day at 0.25m depth to 0.239mg/l.day at 1.25m depth respectively. Comprehensive result for fresh and salt water media is shown in Table 21B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka. Figure 11: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 10 Figure 12: Rate of Sedimentation in Salt Water along the Tank Depth for Week 10 Figures 11 and 12 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively for week 10. The rate of sedimentation also decreased with increase in depth at week 10 (Day 70). In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 70 decreased from 0.596mg/l.day at 0.25m depth to 0.290mg/l.day at 1.25m depth, while the rate obtained from the modified Stokes' law and Newton's law decreased from 0.531mg/l.day at 0.25m depth to 0.258mg/l.day at 1.25m depth and 0.352mg/l.day at 0.25m depth to 0.172mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation from Ukpaka model decreased from 0.905mg/l.day at 0.25m depth to 0.418mg/l.day at 1.25m depth, while the rate obtained from the modified Stokes' law and Newton's law decreased from 0.679mg/l.day at 0.25m depth to 0.313mg/l.day at 1.25m depth and 0.523mg/l.day at 0.25m depth to 0.242mg/l.day at 1.25m depth respectively. Comprehensive result for fresh and salt water media is shown in Table 22B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka. Figure 13: Rate of Sedimentation in Fresh Water along the Tank Depth for Week 12 Figure 14: Rate of Sedimentation in Salt Water along the Tank Depth for Week 12 Figures 13 and 14 showed the rate of sedimentation of suspended solids in crude oil polluted stagnant fresh water and salt water, respectively for week 12. The rate of sedimentation also decreased with increase in depth at week 12 (Day 84). In fresh water, the rate of sedimentation obtained from Ukpaka model at Day 84 decreased from 0.416mg/l.day at 0.25m depth to 0.295mg/l.day at 1.25m depth, while the rate obtained from the modified Stokes' law and Newton's law decreased from 0.370mg/l.day at 0.25m depth to 0.263mg/l.day at 1.25m depth and 0.246mg/l.day at 0.25m depth to 0.175mg/l.day at 1.25m depth respectively. Similarly, in salt water, the rate of sedimentation from Ukpaka model decreased from 0.607mg/l.day at 0.25m depth to 0.430mg/l.day at 1.25m depth, while those obtained from the modified Stokes' law and Newton's law decreased from 0.456mg/l.day at 0.25m depth to 0.322mg/l.day at 1.25m depth and 0.351mg/l.day at 0.25m depth to 0.248mg/l.day at 1.25m depth respectively. Comprehensive results for fresh and salt water media are shown in Table 23B of Appendix. Again, the model modified using Newton's law has the lowest rate of sedimentation, followed by the modified Stokes' law and highest in Ukpaka. Generally, rate of sedimentation decreased with increase in depth and time. This implied that rate at which suspended solids entrained in crude oil settled on the base stagnant water media is highly dependent on depth at specified time. This agreed with earlier observation by Ukpaka while studying the effect of continuous discharge of wastewater on the rate of suspended solids in pond system (Ukpaka, [19]). ### 4. CONCLUSION The conclusion of the research are demonstrated below as: - a. The rate of oil sediment in stagnant water media can be studied using either of the modified Newton's law, Stokes' law or the sedimentation model developed by Ukpaka [18]. - b. Crude oil significantly altered the physicochemical properties of stagnant water, even at depths below the surface. - c. Crude oil pollution in the stagnant fresh and salt water media aided the gradual growth of bacteria, which became rapid within 70 to 84 days. Hence, the bacteria identified can be isolated, cultured and utilise for biodegradation of hydrocarbon in stagnant water media. - d. The rate of Total Petroleum Hydrocarbon (TPH) reduction over time was higher in salt water than fresh water media. ### Appendix Table 1: Rate of Sedimentation (mg/l.day) at Week 1 | H (m) | Ukpaka | | St | Stokes' Law | | Newton's Law | | |-------|--------|--------|--------|-------------|--------|--------------|--| | | FW | SW | FW | SW | FW | SW | | | 0.25 | 0.9255 | 1.3190 | 0.8239 | 0.9892 | 0.5474 | 0.7625 | | | 0.5 | 0.1988 | 0.2948 | 0.1770 | 0.2211 | 0.1176 | 0.1705 | | | 0.75 | 0.0787 | 0.1155 | 0.0701 | 0.0866 | 0.0466 | 0.0668 | |------|--------|--------|--------|--------|--------|--------| | 1 | 0.0553 | 0.0785 | 0.0493 | 0.0589 | 0.0327 | 0.0454 | | 1.25 | 0.0371 | 0.0535 | 0.0330 | 0.0401 | 0.0220 | 0.0309 | Table 2: Rate of Sedimentation (mg/l.day) at Week 2 | H (m) | Ukpaka | | Stol | ces' Law | Newton's Law | | |-------|--------|--------|--------|----------|--------------|--------| | | FW | SW | FW | SW | FW | SW | | 0.25 | 1.1293 | 1.6094 | 1.0053 | 1.2071 | 0.6679 | 0.9305 | | 0.5 | 0.5334 | 0.7911 | 0.4749 | 0.5933 | 0.3155 | 0.4573 | | 0.75 | 0.2583 | 0.3790 | 0.2300 | 0.2843 | 0.1528 | 0.2191 | | 1 | 0.1695 | 0.2405 | 0.1509 | 0.1804 | 0.1003 | 0.1391 | | 1.25 | 0.0963 | 0.1388 | 0.0857 | 0.1041 | 0.0570 | 0.0802 | Table 3: Rate of Sedimentation (mg/l.day) at Week 4 | H (m) | Ukpaka | | Stol | Stokes' Law | | ton's Law | |-------|--------|--------|--------|-------------|--------|-----------| | | FW | SW | FW | SW | FW | SW | | 0.25 | 1.0260 | 1.4622 | 0.9134 | 1.0966 | 0.6068 | 0.8453 | | 0.5 | 0.5262 | 0.7804 | 0.4685 | 0.5853 | 0.3113 | 0.4512 | | 0.75 | 0.3539 | 0.5192 | 0.3150 | 0.3894 | 0.2093 | 0.3002 | | 1 | 0.2899 | 0.4114 | 0.2581 | 0.3086 | 0.1715 | 0.2378 | | 1.25 | 0.2412 | 0.3475 | 0.2147 | 0.2606 | 0.1426 | 0.2009 | Table 4: Rate of Sedimentation (mg/l.day) at Week 6 | H (m) | Ukpaka | | Stok | Stokes' Law | | ton's Law | |-------|--------|--------|--------|-------------|--------|-----------| | | FW | SW | FW | SW | FW | SW | | 0.25 | 0.8883 | 1.2659 | 0.7908 | 0.9494 | 0.5254 | 0.7319 | | 0.5 | 0.5446 | 0.8076 | 0.4848 | 0.6057 | 0.3221 | 0.4669 | | 0.75 | 0.3812 | 0.5593 | 0.3394 | 0.4195 | 0.2255 | 0.3234 | | 1 | 0.3343 | 0.4744 | 0.2976 | 0.3558 | 0.1977 | 0.2743 | | 1.25 | 0.2811 | 0.4050 | 0.2502 | 0.3037 | 0.1662 | 0.2341 | Table 5: Rate of Sedimentation (mg/l.day) at Week 8 | | 0 7 | | | | | | |-------|--------|--------|--------|----------|--------------|--------| | H (m) | Ukpaka | | Stol | ces' Law | Newton's Law | | | | FW | SW | FW | SW | FW | SW | | 0.25 | 0.7722 | 1.1517 | 0.6875 | 0.8638 | 0.4567 | 0.6659 | | 0.5 | 0.5689 | 0.8437 | 0.5065 | 0.6327 | 0.3365 | 0.4877 | | 0.75 | 0.4094 | 0.6007 | 0.3645 | 0.4506 | 0.2422 | 0.3473 | | 1 | 0.3424 | 0.4858 | 0.3048 | 0.3644 | 0.2025 | 0.2809 | | 1.25 | 0.2866 | 0.4130 | 0.2552 | 0.3097 | 0.1695 | 0.2387 | Table 6: Rate of Sedimentation (mg/l.day) at Week 10 | H (m) | Ukpaka | | Stol | ces' Law | Newton's Law | | | |-------|--------|--------|--------|----------|--------------|--------|--| | | FW | SW | FW | SW | FW | SW | | | 0.25 | 0.5958 | 0.9054 | 0.5305 | 0.6791 | 0.3524 | 0.5235 | | | 0.5 | 0.5866 | 0.8494 | 0.5222 | 0.6370 | 0.3469 | 0.4911 | | | 0.75 | 0.4284 | 0.6286 | 0.3814 | 0.4715 | 0.2534 | 0.3634 | |------|--------|--------|--------|--------|--------|--------| | 1 | 0.3460 | 0.4910 | 0.3080 | 0.3682 | 0.2047 | 0.2838 | | 1.25 | 0.2901 | 0.4179 | 0.2582 | 0.3134 | 0.1716 | 0.2416 | Table 7: Rate of Sedimentation (mg/l.day) at Week 12 | H (m) | Ukpaka | | Stok | Stokes' Law | | Newton's Law | | |-------|--------|--------|--------|-------------|--------|--------------|--| | | FW | SW | FW | SW | FW | SW | | | 0.25 | 0.4156 | 0.6073 | 0.3700 | 0.4555 | 0.2458 | 0.3511 | | | 0.5 | 0.5396 | 0.8344 | 0.4804 | 0.6258 | 0.3192 | 0.4824 | | | 0.75 | 0.4482 | 0.6363 | 0.3990 | 0.4772 | 0.2651 | 0.3679 | | | 1 | 0.3363 | 0.5061 | 0.2994 | 0.3796 | 0.1989 | 0.2926 | | | 1.25 | 0.2953 | 0.4296 | 0.2629 | 0.3222 | 0.1747 | 0.2484 | | Table 8: Total Dissolved Solids (TDS) Measurement in Fresh Water | Time | TDS (mg/l) | | | | | | | |--------|------------|--------|--------|--------|--------|--------|--| | (Days) | | | | | | | | | | Pt 1 | Pt 2 | pt 3 | Pt 4 | Pt 5 | Pt 6 | | | 1 | 120.08 | 118.9 | 118.74 | 116.85 | 115.93 | 113.7 | | | 14 | 113.04 | 113.06 | 113.08 | 113.1 | 113.11 | 113.14 | | | 28 | 90.71 | 96.96 | 106.41 | 106.8 | 107 | 113.02 | | | 42 | 90.21 | 96.18 | 98.51 | 101.86 | 103.72 | 87.53 | | | 56 | 84.8 | 84.83 | 85.15 | 85.28 | 85.3 | 85.33 | | | 70 | 83.84 | 84.09 | 84.12 | 84.14 | 84.16 | 84.2 | | | 84 | 83.63 | 83.7 | 83.72 | 83.75 | 83.79 | 83.8 | | Table 9: Total Dissolved Solids (TDS) Measurement in Salt Water | Time | TDS (mg/l) | | | | | | |--------|------------|--------|--------|--------|--------|--------| | (Days) | | | | | | | | | Pt 1 | Pt 2 | pt 3 | Pt 4 | Pt 5 | Pt 6 | | 1 | 132.2 | 130.06 | 129.5 | 126 | 125.8 | 124.11 | | 14 | 194.11 | 198.06 | 198.5 | 198.91 | 142.23 | 176.18 | | 28 | 192.4 | 192.43 | 192.6 | 193.12 | 193.45 | 193.5 | | 42 | 190.4 | 190.75 | 191.08 | 191.48 | 191.62 | 191.74 | | 56 | 188.31 | 188.6 | 188.9 | 190.12 | 190.15 | 190.25 | | 70 | 186.7 | 187.13 | 187.38 | 187.72 | 188.05 | 188.2 | | 84 | 183.9 | 184.6 | 185.1 | 185.52 | 186.6 | 186.66 | Table 10: Input Data for Model Simulation | Parameter | Value | Reference | |----------------------------------------------------|-------------------------------------------------|----------------| | Diffusion coefficient, D (m²/s) in z-direction | $3.4928 \times 10^{-5} - 1.7464 \times 10^{-4}$ | This work | | Diffusion coefficient, D (m²/s) in x-direction | $3.5645 \times 10^{-6} - 1.7802 \times 10^{-5}$ | This work | | Water depth, d (m) | 1.5 | This work | | Height of sample point from water surface, z (m) | 0.25 - 1.25 | This work | | Karman's constant, k_0 (-) | 114.52 | Zhi-Wei et al. | | | | (2000) | |-------------------------------------------------------------|------------------------------|---------------| | | FW: 0.0034 | | | First Order Rate Constant, kd (day-1) | SW: 0.00213 | This work | | | FW: 24.1908 | | | Maximum rate constant, Um (mg/l) | SW: 10.4564 | This work | | | | | | Mono constant, K _m (mg/l) | FW: 12716.43 | This work | | | SW: 8239.27 | | | Rate of momentum transfer, U (kg.m/day) | 1.0 | Ukpaka (2011) | | Acceleration due to gravity , g (m/s ²) | 9.81 | | | Below the surface water slope, $ S_{o} $ (-) | 5.6254×10^{-4} | Ukpaka (2011) | | $K_{\scriptscriptstyle F}$ in modified Stokes' equation (-) | FW: 1.0625×10^{-11} | This work | | | SW: 2.8407×10^{-2} | | | $oldsymbol{K}_F^*$ in modified Newton's equation (-) | FW: 1.7741×10^{-8} | This work | | | SW: 2.9988×10^{-8} | | | v_s in modified Stokes' equation (m/s) | FW: 7.3×10^{-4} | This work | | | SW: 9.6×10^{-4} | | | v_s in modified Newton's equation (m/s) | FW: 4.85×10^{-4} | This work | | | SW: 6.68×10^{-4} | | | v_s in Ukpaka model (m/s) | FW: 8.20×10^{-4} | This work | | | SW: 1.28×10^{-4} | | | Volume of oil, V (m ³) | 2.5×10^{-4} | This work | | Oil particle density $ ho_p$ (kg/m³) | 1162 | This work | | Fluid density, $ ho_f$ (kg/m³) | 1000 | This work | | Viscosity of fluid, μ (kg/m.s) | 2.41 x 10 ⁻³ | This work | NB: FW = Fresh Water and SW = Salt Water # **Funding** This study has not received any external funding. ### **Conflict of Interest** The author declares that there are no conflicts of interests. # Data and materials availability All data associated with this study are present in the paper. # REFERENCES AND NOTES - Harji, R.R., Yvenat, A., & Bhosle, N. B. (2008). Sources of Hydrocarbons in Sediments of the Mandovi Estuary and the Marmugoa Harbour, West Coast of India, *Environmental International*, 34, 959–965. - Henschke M., Schliper L.H. & Pfening A. (2002). Determination of a Coalescence Parameter from Batch-Settling Experiments, Chan Eng. J. 85:369-378. - 3. Hilmer, T., & Bate, G. C. (1987). Hydrocarbon Levels in the Swartkops Estuary: A Preliminary Study, *Water SA*, 13, 180–183. - 4. Hinze J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispension processes. ALCHE J.I, 289-259. - Hou. M.J., Shah, D. O. (1987). Effects of the molecular structure of the interface and continuous phased on solubilisation of water in water/oil micro-emulsions Langmuir 3, 1086-1096. - 6. Inyang, S.E., Aliyu, A.B., & Oyewale, A.O. (2018). Total Petroleum Hydrocarbon Content in Surface Water and Sediment of Qua-Iboe River, Ibeno, Akwa-Ibom State, Nigeria, Journal of Applied Science and Environmental Management, 22 (12), 1953–1959. - 7. Jones, D.M., A.G. Douglas, R.J. Parkes, J. Taylor, W. Giger, and C. Schafner, "The recognition of biodegraded petroleum derived aromatic hydrocarbons in recent marine sediments," Marine pollution Bulletin, Vol. 14, No. 3, Pp. 103-108, 1983. View at: Publisher Site/Google Scholar. - Kumar, V., Arya, S., Dhaka, A., & Minakshi, C. (2011). A Study on Physico-Chemical Characteristics of Yamuna River around Hamirpur (UP), Bundelkhand Region Central India, International Multidiscipline Research Journal, 1, 14–16. - Le Floch, S., Guyomarch, J. Merlin, F. X., Stoffyn-Egli, P. Dixon, J. & Lee, K. (2002). The Influence of salinity on oil-mineral aggregate formation spill sci Technol B8 65-71. - 10. Leek L. T., Wood, P. A. & Stoffyn-Egli P. (1998). Formation and structure of oil-mineral fine aggregates in coastal environments in: proceeding of the 21st Arctic and marine oil spill program Technical, seminar 1085-1103 - 11. Li, D., Zhen, Z., Zhang, H., Li, Y., & Tang, X., (2019). Numerical Model of Oil Film Diffusion in Water Based on SPH Method, *Mathematical Problems in Engineering*, 8(11), 39-52. - 12. Matsuzaki, Y., & Fujita, I. (2014). Horizontal Turbulent Diffusion at Sea Surface for Oil Transport Simulation, *Coastal Engineering*, 14(2), 13-22. - Mohebbi-Nozar, S.L., Zakaria, M.P., Ismail, W.R., Mortazawi, M.S., Salimizadeh, M., Momeni, M., & Akbarzadeh, G. (2015). Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf, Mar. Pollut. Bull., 95, 407–411. - 14. Muhammad, S.A., Magaji, M. B. & Idris, M. A. (2020). Assessment of Physicochemical Parameters in Crude Oil Contaminated Water Samples of Three Communities of Ikpokpo, Atanba, and Okpele-Ama of Gbaramatu Kingdom, along the Escravos River in Warri South West Local Government Area of Delta State, Nigeria, International Journal of Environment and Pollution Research, 8(1), 57-76. - Muthukumar, A., Dayachandiran, G., Kumaresan, S., Kumar, T.A., & Balasubramanian, T. (2013). Petroleum hydrocarbons (PHC) in sediments of three different ecosystems from Southeast Coast of India. *International Journal of Pharmaceutical Biology and Archaeology*, 4, 543–549. - Nasrabadi, T., Ruegner, H., Schwientek, M., Bennett, J., Valipour, S.F., & Peter Grathwohl, P. (2018). Bulk Metal Concentrations versus Total Suspended Solids in rivers: Time-Invariant & Catchment-Specific Relationships, *PLoS ONE*, 13(1), 1-15. - 17. Odisu, T., Okieimen, C., & Ogbeide, S. (2020). Modeling of Vertical Transport of Hydrocarbons of Crude Oil Spills in Non-Convective Water Bodies Supported by Suspended Sediments: Case of Parts of the Nigerian Niger Delta Mangrove Swamps, European Journal of Sustainable Development Research, 4(4), 143-157. - 18. Ukpaka, C. P. (2011). Sedimentation model of suspended solids upon the influence of continuous discharge of waste water in pond system for dry season, *Global Journal of Engineering and Technology*, 4(4), 507-520. - 19. Villa, A, Fölster, J., & Kyllmar, K. (2019). Determining Suspended Solids and Total Phosphorus from Turbidity: Comparison of High-Frequency Sampling with Conventional Monitoring Methods, *Environmental Monitoring and Assessment*, 191(9), 605-617. - Yan, D., Meng, L., Li, H., Song, T., Sun, P., Bao, M., & Li, X. (2019). Petroleum Hydrocarbon Release Behavior Study in Oil-Sediment Aggregates: Turbulence Intensity and Chemical Dispersion Effect, Royal Society of Chemistry Advances, 9(2), 7922–7931. - 21. Zhang, H., Khatibi, M., Zheng, Y., Lee, K., Li. Z, & Mullin, J.V. (2010). Investigation of OMA Formation and the Effect of Minerals. *Mar.Pollut.*60, 1443-1441. - 22. Zhang, J., Zeng, J. & He, M. (2009). Effects of temperature and surfactants on naphthalene and, phenanthrene sorption by soil.J. Environ. Sci 21,667-674. - 23. Zhi-wei, L., Mead, C. T. & Shu-shen, Z. (2000). Modelling of the Behaviour of Marine Oil Spills: Application Based on Random Walk Techniques, *Journal of Environmental Science*, 12(1), 1-6.