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ABSTRACT 

Demand for higher production rate compels to operate machines at ever 

increasing speeds. With the advent of new manufacturing technologies now 

machine parts and mechanisms are also made of composite materials having 

high strength to weight ratio and high stiffness to weight ratio instead of 

homogeneous & isotropic materials such as carbon steels or aluminum metals. 

So, the members(Links) can also be fabricated from F.R.P.C. (fiber reinforced 

polymer composites) or simple P.M.M. (polymer matrix material) for very 

high speed of operations, this also result in weight savings up to 70%, thus 

less inertia forces , stresses, deflection, noise and vibration of links, therefore 

less chances of fatigue failure. These mechanisms are very often used in 

extreme atmospheric conditions with the requirement of high accuracy. In 

hygrothermal environment presence of moisture & high temperature affects 

the kinematic accuracy & precision of mechanism, also   deviations in coupler 

curves are observed. In the present work F.R.O.M.(Full-Range-Of-Motion) 

computational simulative analysis has been done to find out the kinematic 

deviations mainly with reference to coupler curve of  four bar mechanism 

made of neat polymer matrix material(Neat Resin)i.e. R-914 and 8551-7, when 

they are subjected to high temperature and high humidity environment i.e. 

hygrothermal environment with reference to dry atmosphere.  It is found that 

due to structural deviations, coupler curve of   four bar mechanism is altered 

under hygrothermal environment. 
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Freudenstein’s equation, Fickean diffusion, Hygrothermal effect, Kinematic 

deviations, Coupler curve, Polymer matrix material, Full-Range-Of-Motion. 

 

Nomenclature: 

(a, b, c, d) and (a1, b1, c1, d1): Lengths of crank, coupler, rocker and fixed/frame 

link under dry and hygrothermal environment (in mm). D: Diffusion 

coefficient (mm2/second).Jx: Moisture flux (mol/mm2-sec), L = Length of Link, 

T = Change in temperature L: increase in length under hygrothermal 

environment (in mm). m: Enhancement in moisture content from dry 

condition (%). t: Time (in seconds). T: Enhancement in temperature (˚C). : 

Coefficient of thermal expansion (mm / ˚C). , L, T: Coefficient of moisture 
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expansion, Coefficient of moisture expansion in longitudinal and transverse direction in (mm / % of moisture absorption).Ɛ, Ɛhygro, 

Ɛthermal: Strain, strain due to hygro(moist) environment and strain due to elevated temperature in (mm/mm). Ɵ2: Angular 

displacement of crank. Ɵ3, Ɵ4, Ɵ31, Ɵ41: Angular displacement of coupler and rocker link under dry and hygrothermal environment in 

degrees. μ: Transmission angle.  γ: Angle between line joining coupler point with pin joining crank to coupler and coupler link in 

degrees. 

 

 

1. INTRODUCTION 

In order to increase the productivity the high speed linkages are manufactured with composite material which posses high strength 

to weight ratio and high stiffness to weight ratio compare to conventional material used to fabricate the linkages like steel, 

Aluminum or alloys [1-6; 26]. During the mid 1970's a physical phenomenon associated with polymer matrix composites was 

recognized know as hygrothermal effect, that is due to combination of high temperature and high humidity caused a doubly 

deleterious effect on structural performance of composites. The two fold problem involves entrapment of moisture in the polymer 

matrix and attains dent weight increase and more importantly swelling of matrix. It was realized that the ingestion of moisture 

varied linearly with the swelling of matrix. In fact the epoxy absorbs the moisture when subjected to high humid atmosphere. In 

this study analysis of different Grashof four bar planer mechanisms is done to find out the deviations in Geometry of mechanism, 

output angles and in coupler curve using Freudenstein’s equation due to enhanced temperature and humidity. 

 

2. HYGROTHERMAL EFFECT 

Epoxy resin absorbs moisture when exposed to humid atmosphere, initially by instantaneous surface absorption and subsequent 

diffusion through the interior. The absorbed water is not liquid, but exist rather in hydrogen bonded molecules or clusters within 

the polymer. Liquid water may however be transported by capillary action along cracks and in composites along fiber matrix 

interfaces and may appear at interior voids. The absorbed water softens epoxy resins, causes them to swell and lowers their Glass 

transition temperature. In the classical linear diffusion model moisture flux is assumed to be directly proportional to the 

concentration gradient also known as Fickean diffusion (refer fig.1). Therefore the basic equations governing the diffusion into the 

plate are: 

 

 
x

dM
J D

dX
= −

     (Fick's first law of diffusion)  ...... (1) 

 

and 

 

2

2

dM d M
D

dt dt
=

       (Fick's second law of diffusion)  ...... (2) 

 

The initial boundary conditions are  

 M (x, 0) = 0      ...... (3) 

 

 M (l, t) = Mm      ...... (4) 

 

Where,  

  
100d

d

W WdM

dt W

−
= 

     ...... (5) 

 

 

W is the weight of moist material and Wd is the weight of dry material. Mm is the maximum moisture content. Where M is the 

moisture concentration wt. percentage at (x, t) and 'D' is the coefficient of diffusion. Jx is the moisture flux, t denotes time. Moisture 

absorption is a function of temperature and time. At higher temperature rate of moisture absorption will be higher. It is established 

that the ingestion of moisture varied linearly with the swelling so that in fact 
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


 = = 

     …....... (6) 

 

Where m is the increase from zero moisture (dry condition) measured in percentage weight increase and  is the coefficient of 

moisture expansion. Coefficient of moisture expansion can also be calculated as per schapery's equation and applying Rule of 

mixture [7-14].Along fiber direction and along Transverse direction 
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m m m
L
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
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    ..…........ (7) 

 
(1 )T m m mV V = +

    ……....... (8)   

 

Due to elevated temperature, length of the bar will increase and thermal strain. 

 
.thermal

L
T

L



 = = 

     ……...... (9) 

 

  
hygro thermal= +

 
 

Here, in this analysis of four bar mechanism we have assumed that the material of the mechanism is polymer matrix materials 

i.e. neat resin system R-914 and 8551-7. The average Material properties for Neat Resin Systems R-914, 8551-7, Tested under 

hygrothermal environment is given below in tabular form [15-16]. Enhancement in moisture is taken as maximum enhancement in 

moisture gain and enhancement in temperature is taken as 80˚C. 

 

Neat Resin 

System 

Moisture 

Condition 

Coefficient of Thermal 

Expansion (10-6/C) 

Coefficient of Moisture 

Expansion (10-3/%M) 

Equilibrium Moisture 

Content (%M) 

R-914 
Dry  

Wet 

58.4 

62.6 
3.02 7.0 

8551-7 
Dry  

Wet 

46.7 

70.0 
3.09 2.0 

 

3. POSITION ANALYSIS  

Position analysis is done to find out alteration in 3, 4. A four bar mechanism is shown in figure no.2. We have taken a link made of 

composite material having a length L. 

 

 
 

Figure 1.  Fickean diffusion of moisture in P.M.M. 

 
 

Figure 2.   Four bar planar mechanism 
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Then change in length of link due to temperature enhancement 

 L T = L..T      …...... (10) 

 

Change in Length due to hygro (moist) environment 

           Lh=L..m                             …....... (11) 

 

Total Change in Length due to hygrothermal environment 

 L = LT + Lh 

 L = L (.T +.m)     …....... (12) 

 

Let the mechanism is made of a neat resin from any of the material given in Table 1. Due to hygrothermal environment the link 

length will change, so now the enhanced length of Crank a1 = a (.T +.m), Coupler b1 = b (.T +.m), Rocker c1 = c (.T 

+.m), assumed that fixed link is made of metal, so d1 = d..T. Position analysis is done for this problem using Freudenstein’s 

equation [28].  
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here, A = K – a (d - c) Cos2 – c.d , B = -2ac Sin, C = K – a (d + c) Cos  + c.d, K = (a2 – b2 + c2 + d2)/2 ,D = K – a (d + b) Cos2 + b.d, E 

= 2ab Sin2, F = K – a (d - b) Cos 2 + b.d 

 

 

Now due to hygrothermal environment 3 and 4 will change, let now 3 is 3' and 4 is 

 

 4'













 −−
= −

1

11

2

111

4
2

4
2'

A

CABB
Tan            













 −−
= −

1

11

2

111

3
2

4
2'

D

FDEE
Tan

 

 

A1 = K1 – a1 (d1 – c1) Cos2 – c1d1, B1 = -2.a1.c1. Sin2, C1 = K1 – a1 (d1 + c1) Cos 2 + c1d1 

 

K1 = (a12 – b12 + c12 + d12)/2, D1 = K1 – a1. (d1 + b1) Cos2 + b1 .d1, E1 = 2a1. b1. Sin, F1 = K1 – a1. (d1 – b1) Cos 2 + b1 .d1    To find out 

deviation for complete notation of Crank 3 and 4 are calculated using F.R.O.M.(Full-Range-Of-Motion) simulation for which Code 

was also generated. Also 3' and 4' are calculated. Co-ordinate of hinged joint connecting Crank with Coupler is (Ax, Ay) here, Ax = 

a.Cos2,    Ay = a.Sin2, New coordinates in hygrothermal environment are Ax1 = a1.Cos2,   Ay1 = a1 .Sin2   .Coordinate of hinged joint 

connecting Coupler with rocker is Bx = a Cos2 + b Cos3, By = a Sin2 + b Sin3 Now, new coordinates in hygrothermal environment 

are Bx1 = a1 Cos2 + b1 Cos31, By1 = a1.Sin2 + b1.Sin31. A and B are also located at the extreme ends of Coupler their path is generated 

for one complete rotation of Crank, under hygrothermal environment. 
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Figure 3. Trajectory traced by centre point –A under 

hygrothermal environment for different materials viz. R-914, 

3502 and link lengths a=100mm, d=200mm, b=c=160mm,    

∆m=7%, ∆t=95˚C. 

 
Figure 4. Trajectory traced by point-B under hygrothermal 

environment for different materials viz. R-914, 3502 and link 

lengths (a=100mm, d=200mm, b=c=160mm), ∆m=7%, ∆t=95˚C. 

 

4. DEVIATIONS IN COUPLER CURVE 

Coupler curve have been in use in the design of machinery ever since James watt used a straight segment of a lemniscoidal curve 

for guidance purpose in his double acting Steam engine in 1782. Around the same time (1788) John Fitch made use of the entire 

curve in designing crank driver paddles at the stern of a boat. In the subsequent decade there was a lot of interest in designing 

linkages to accomplish specific task mostly in straight line generation .In the middle of nineteenth century the algebraic geometers 

of that time Cayley [17-18] and Roberts [19-20] shifted focus on to the analytical treatment of Coupler curves. Their studies 

established many interesting properties of four bar coupler curve including its algebraic equation. Coupler curves are used to 

generate useful path motions for design problems. They can approximate straight line, circular arc etc. Coupler curve is a solution 

to a path generation problem. It is a very useful device. The four-bar linkage has a coupler curve equation of degree 6 while slider 

crank linkage has a coupler curve of degree 4. Horns and Nelson atlas of four-bar coupler curve is useful reference to provide a 

starting point for design and analysis. It contains 7000 coupler curves and defines the linkage geometry for each of its Grashof’s 

crank-rocker linkages [21]. Basic method of obtaining the equation of coupler for four-bar linkage is briefly presented. A tracing 

point on coupler link has a coordinates (x, y) obtained by rotating crank of the linkage as shown in Fig.2. The first analytical 

investigation of coupler curve, the curve of the Watt mechanism was undertaken by Prony, who examined Watt’s “straight–line 

motion” for deviations (1796).  Around the same time (1788) John Fitch made use of the entire curve in designing crank driver 

paddles at the stern of a boat. Subsequently, there was a lot of interest in designing linkages to accomplish specific task using 

various type of coupler curves, mostly in straight line generation. Almost all of the modern analytical approaches to path 

generation are either limited to a finite number of points based on the Burmester’s theory, or oriented towards approximate path 

generation through optimization [23-24] 

Coupler curves are used to generate useful path motions. They can approximate straight line, circular arc, kidney bean shape, 

crunodes, cusp, umbrella, triple loop, crescent, pseudo ellipse, scimitar, figure- eight etc [25]. Coupler curve of four bars is an 

algebraic curve of sixth order, depending on geometry of four bar mechanism and position of coupler point. Coupler curve is 

function of (a, b, c, d, e, Ψ, , , t, m), but under hygrothermal  environment   coupler curve is function of (a, b, c, d, e, Ψ, , , t, 

m, t). Position of coupler point E (offset) having coordinates Xe & Ye   can be expressed as 

 

Xe = a.Cos2 + e.Cos ( + 3), Ye = a. Sin2 + e .Sin ( + 3). Where, e = AE and   = EAB, Fig.2. The coordinates of coupler point will 

change due to hygrothermal environment. Xe and Ye will have the following value Xe1 =a1. Cos2 + e1. Cos (1 + 31) and Ye1 =a2 

.Sin2 + e1. Sin (1 + 31). 
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Figure 5   Coupler curve deviations for different material 

under hygrothermal environment, a=2250mm, 

b=c=d==4500mm, e=4500mm, α=245.5˚. 

 
Figure 6   Coupler curve (figure eight crunodes) deviations 

for different material under hygrothermal environment, 

a=3000mm, b=c=4500mm, d=5000mm,e=4500mm, =270˚ 

 
Figure 7  Coupler curve (teardrop cusp) deviation for 

different material under hygrothermal environment, 

a=2250mm, b=c=d=4500mm, e=5000mm, =336˚ . 

 
 

Figure 8 Coupler curve deviation under hygrothermal 

environment, a=2250mm, b=c=d==4500mm, 

e=5000mm,=336˚, figure eight crunodes  in dry atmosphere 

transforms to Cusp under hygrothermal environment. 

 
Figure 9 Coupler curve (teardrop cusp) deviation for 

different material under hygrothermal environment, 

a=100mm, b=c =130mm,  d=120mm, e=33mm, =320˚ 

Figure 10 Coupler curve deviation for different material 

under hygrothermal environment , a teardrop Cusp in dry 

atmosphere transforms to figure eight crunodes  under 

hygrothermal environment,  a=100mm, b=c =130mm,  

d=120mm, e=33mm, =320˚. 

 
Figure 11  Coupler curve (kidney bean) deviation for 

different material under hygrothermal environment , 

a=2250mm, b=c =d=4500, e=3750mm, =45˚ 

 
Figure 12 Coupler curve (crescent) deviation for different 

material under hygrothermal environment, a=15mm, b=c 

=d=e=30mm, =358˚. 

 

5. CONCLUSION 

Results obtained indicate a clear deviation in kinematic performance of the four bar mechanism also deviation in shape of coupler 

curves is observed, for example Cusp in dry atmosphere transforms into figure eight crunodes under hygrothermal environment, 

figure eight crunodes in dry atmosphere transforms to Cusp under hygrothermal environment, a teardrop Cusp in dry atmosphere 
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transforms to figure eight crunodes under hygrothermal environment. The above deviations establish the fact that motion 

characteristics of kinematic chain made up of resins, changes under hygrothermal environment. The above fact needs to be 

considered while designing the mechanism for specific objective made up of polymer materials while working in hygrothermal 

environment. 
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