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ABSTRACT 

In this paper the scheduling of the residential load models like AC, Electric 

Water Heater (EWH), Cloth Dryer (CD) and Electric Vehicle (EV) considering 

the consumer comfort level and the preference setting. The real time pricing is 

considered so that peak demand shifts to the low pricing hours and saving in 

the electricity bill. In the electricity bill there is additional charges applied on 

the customer for drawing highest amount of power if it violates the demand 

limit level which is specified by the utility during any interval in the billing 

period. The comparative study of the three methods used for scheduling has 

been analyzed. The scheduling of home has been developed using home 

energy management algorithm without optimization and with consideration 

of load priorities. The energy management by Binary Particle Swarm 

Optimization (BPSO) and managing the appliances by proposed Binary Salp 

Swarm Algorithm (BSSA). The inference is drawn that the proposed BSSA 

gives the better results than the other two. The saving in the electricity bill and 

reduction of load factor which can be gained by the BSSA is in a noticeable 

range and convergence is fast as compare to BPSO. 

 

Keywords: Home Energy Management System:  Residential Load Models; 

Dynamic Pricing Mechanism 

 

 

1. INTRODUCTION 

Demand side management (DSM) program is to regulate the load demand in 

peak hours which is due to consumer use of electricity. There are various 

components involved in DSM like energy efficient end use smart devices, 

integration of renewable energy sources enabling load shaping and demand 

response (DR). To meet the peak power demand utility cuts the power or it 

results in blackout so reducing the peak power demand reduce the risk of 

power failures. Demand Response (DR) helps to handle the peak demand 

occurrence and avoid network congestion, as it supports the adaptability 

needed to change the timing of loads [1]. DSM is one of the important function 

in a smart grid that helps energy providers to reduce the peak load demand 

and reshape the load profile. The day ahead load shifting technique proposed 

is mathematically formulated as a minimization problem. An evolutionary 
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algorithm with a heuristic base that is easy to adapt to the set of rules that intended to increase the probability of solving the 

mentioned problem [2]. Dynamic pricing for DSM within smart grid environment. It divides the paper into two stages, in which the 

first stage is a composite technique developed with the aim of minimizing the operating cost of optimal power flow (OPF) within 

defined constraints by the use of particle swarm optimization (PSO) with heuristic algorithm. In the second stage, consumer will 

penalize for violating the defined limits or give incentives if they consume less than defined limits [3]. This paper shows the impact 

of various pricing systems such as Time of Use (ToU), Critical Peak Price (CPP), Real Time Price (RTP), and Demand Response (DR) 

program in the residential sector. Control Power consumption and compensate for peaks in demand, and energy cost used as a 

control signal. With the establishment of the smart metering framework in the future smart grid, DR will play a significant role [4]. 

Demand Response (DR) programmed to enhance the association among electric utility and consumer. Price significance contributed 

substantially. SVRGA (Support Vector Regression accompanying Genetic Algorithm) utilized to improve price prediction [5]. There 

are various ways of scheduling demand side resources using smart grid concept. This paper based on Mixed Integer Non Linear 

Programming (MINLP) for scheduling of home appliances in response to varying prices and incentives. By this proposed MINLP 

optimization, minimization in electricity cost is delivered without sacrificing consumer comfort[6]. Elasticity is important in the 

pricing method because it is a top way to exemplify a buyer’s reaction towards price signal. The cluster analysis algorithm records 

the client’s readiness to modify the load profile in accordance with the tariff forecast [7]. The Clonal Selection Algorithm (CLA) 

applied to the programming of the domestic DSM subject to the availability of photovoltaic production with a certain number of 

methodological limitations [8]. There are various components involved in DSM like energy efficient end use smart devices, 

integration of renewable energy sources enabling load shaping, Home Area Network to turn end use devices on/off as per 

requirement and a proper two way communication between utility and user all these factors reduce capital investment in power 

plant for meeting peak demand[9]. In this paper a binary particle swarm optimization (BPSO) is proposed. The algorithm efficiently 

schedule the appliances according to the users consumption pattern and the working characteristics of the appliances. The BPSO 

optimizes the scheduling period, which results in shifting peak period and smoothing the demand curve by the use of dynamic 

tariff [10]. In this paper binary particle swarm optimization (BPSO) incorporates the scheduling scheme for the interruptible loads 

by considering the constraints, which handles the penalty function and the different level of consumer satisfaction. It controlled by 

the weight factor which is introduced in the objective function [11]. Salp swarm algorithm (SSA) is a new meta-heuristic algorithms 

based on the behaviors of salpidae which is found in deep oceans. The paper includes a binary variant of the Salp Swarm Algorithm 

(SSA) called Binary Salp Swarm Algorithm (BSSA). By the use of transfer function for obtaining the global optimization the 

continuous SSA is converted into BSSA. The comparative study of different transfer function is done for various benchmark 

functions [12].  

In this research paper the development of the scheduling algorithm which reduces the peak power demand according to 

dynamic pricing mechanism. The principle commitments of this paper are as per the following. 

• The appliances are divided into four categories: Thermostatically load which works on thermostat principle like AC and 

electric water heater (EWH). Uninterruptible load i.e. clothes dryer (CD) once it get started it should not get interrupt until 

it completed its job. Shiftable load i.e. electric vehicle (EV) it can shift any specified time without violating preference 

setting and it gets interrupted in between the operation of the device. The critical loads like refrigerators, kitchen 

appliances and entertainment devices which are neither shifted nor interrupted it operated according to the consumer 

requirements.  

• These devices play a significant role in increasing the peak demand. So as to build up an algorithm to control the 

household appliances first the load models must be demonstrated which determines the power consumption of the 

appliances and the load priorities and consumer comfort also taken into account. 

In this paper the binary salp swarm algorithm (BSSA) is proposed which minimized the cost of home energy and is compared 

with the binary particle swarm optimization (BPSO) and without optimized home energy management algorithm. These algorithms 

developed in MATLAB 2015(a). 

This paper is organized as: Section II focuses on appliances modeling, Section III problem formulation, Section IV objective 

function, constraints and Proposed BSSA, Section V Result and Discussion Section VI Conclusion and future work. 

 

2. DEMAND RESPONSE ENABLED LOAD MODELS 

2.1. Electric Water Heater (EWH) 

For each time slot i the electricity demand for water heating unit is determined as [13] 
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                                𝑃𝑊𝐻,𝑖  =  𝑃𝑊𝐻  ∗ 𝑊𝑊𝐻,𝑖 ∗  𝜂𝑊𝐻  ∗ 𝐷𝑊𝐻,𝑖                                                     (1) 

 

The electric power demand additionally relies upon the demand response (DR) control signal got from an outside source for e.g. an 

in home controller or an utility. The DR control signal of 0 will stop the unit and DR control signal of 1 will turn on the unit. 

 

The outlet water temperature in the tank in next time slot i is determined as [13] 

 

𝑇𝑜𝑢𝑡𝑙𝑒𝑡,𝑖+1 =  
𝑇𝑜𝑢𝑡𝑙𝑒𝑡,𝑖(𝑉𝑡𝑎𝑛𝑘 − 𝑓𝑟𝑖 ∗ ∆𝑡) 

𝑉𝑡𝑎𝑛𝑘
+

𝑇𝑖𝑛𝑙𝑒𝑡 ∗ 𝑓𝑟𝑖 ∗  ∆𝑡 

𝑉𝑡𝑎𝑛𝑘
                                                              (2)  

+
1𝑔𝑎𝑙

8.34𝑙𝑏
[𝑃𝑊𝐻,𝑖  ∗

3412𝐵𝑡𝑢

𝑘𝑊ℎ
−

𝐴𝑡𝑎𝑛𝑘 ∗ (𝑇𝑜𝑢𝑡𝑙𝑒𝑡,𝑖 − 𝑇𝑎)

𝑅𝑡𝑎𝑛𝑘
] ∗

∆𝑡

60
𝑚𝑖𝑛

ℎ

∗
1

𝑉𝑡𝑎𝑛𝑘
 

 

The EWH status is followed as : at the point when the water temperature in the high temp water tank goes over the set point, it 

doesn't work. At the point when the water temperature dips under a lower bound, the heating coils start working again at its rated 

power until the outlet heated water temperature arrives at the upper bound [13]. 

 

2.2. Air Conditioning (AC) 

In an AC unit, thermostat is utilized to keep up the temperature of the room inside the predefined extend. So as to direct the 

temperature, first it detects the room temperature and contrasts it with the set point and afterward cooling coils are turned on or off 

in like manner. An indoor regulator may turn on and off at temperatures on either side of the set point .The distinction between the 

upper or lower breaking point of the admissible temperature and the set point is named as the dead band or temperature 

deviation/differential. When the status of AC unit is om it consume electric power. The electric power of AC unit is determined as 

[13] 

 

                                      𝑃𝐴𝐶,𝑖  =  𝑃𝐴𝐶 ∗ 𝑊𝐴𝐶,𝑖 ∗ 𝐷𝐴𝐶,𝑖                                                                     (3) 

 

For each time slot i the room temperature is calculated as[13] 

 

𝑇𝑖+1 = 𝑇𝑖 +  ∆𝑡.
𝐺𝑖

∆𝑐
+ ∆𝑡.

𝐶𝐻𝑉,𝐴𝐶

∆𝑐
. 𝑊𝐴𝐶,𝑖                                                           (4) 

 

2.3. Clothes Dryer(CD) 

In the clothes dryer the power consumption comprised is from the motor part (low power range) and the heating coils which can be 

several kilowatts [13] 

 

For each time slot i the power consumption of clothes dryer is calculated as [13] 

 

                                𝑃𝐶𝐷,𝑖  =  𝑃ℎ𝑐 ∗ 𝑊𝐶𝐷,𝑖 ∗ 𝑘 + 𝑃𝑚  ∗ 𝑊𝐶𝐷,𝑖                                                        (5)  

 

On receiving the DR control signal the heating coils will be controlled (ON/OFF) but the motor part will not be controlled [13]. 

 

2.4. Electric Vehicle (EV) 

In this paper EV is used as a load. The battery state of charge (SOC) at the previous time slot, the energy used for driving and the 

battery rated capacity, which is calculated as 

 

                                                       𝑆𝑂𝐶0 = 1 −  
𝐸𝑑𝑟

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦
                                                               (6) 

 

                                                         𝑆𝑂𝐶𝑖 =  𝑆𝑂𝐶𝑖−1 + 𝑃𝐸𝑉 ∗ 
∆𝑡

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦
                                       (7) 
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For the calculation of EV power consumption the plug in time, battery SOC and rated EV power is important. The power 

consumption of EV is calculated as 

 

                                          𝑃𝐸𝑉,𝑖  =  𝑃𝐸𝑉 ∗ 𝑊𝐸𝑉,𝑖 ∗ 𝐷𝐸𝑉,𝑖                                                               (8) 

 

3. PROBLEM FORMULATION 

3.1. Requisites of Home Energy Management (HEM) Structure 

For implementing DR strategy an Advanced Metering Infrastructure (AMI) is required, which is a two way communication at both 

utility level and consumer home appliances level. A demand limit signal is imposed by the utility. Home domain Home domain 

interface unit is the main controlling center which continuously monitored the real time energy consumption of all household loads. 

The DR scheme embedded in home domain interface unit control center [14]. The smart appliances are IP addressable, intelligent, 

more energy efficient and automatic communicate based on users convenience and preference. They receive control signal and 

report its status to the home domain interface unit control center. 

 

3.2. Demand Response (DR) Scheme 

Demand response scheme started when the total power consumption (Ph,i) of home exceeds the demand limit (DLi) level. In this 

paper, appliances are categorized into two parts: non critical power intensive loads and critical loads. Non critical power intensive 

loads like AC, Water Heater (WH), clothes dryer (CD), and EV are the controllable loads. The critical loads such as light, 

refrigerator, and other plug loads. DR enabled load models of AC, Water Heater, Cloth Dryer, EV are developed according to [13] 

considering load priority and convenience preferences of consumer. The assigned priority of the load decides the order of the 

appliance type during demand response program. Assuming the priority of the load and comfort preference for our target home is 

shown in Table 3. 

 

Table 3 Preset Appliance Priorities  

APPLIANCE TYPE APPLIANCE PRIORITY 

EV 4 

CD 3 

AC 2 

WH 1 

 

The assigned priority of the load decides the order of the appliance type during demand response program. Lower priority 

loads will be moved to later time spans, where as far as demand limits are high. As indicated by that the EV load is the first to be 

curtail then Cloth Dryer (CD), AC, and Water Heater (WH). Assuming the priority of the load for our target home are shown in 

Table 3. 

 

The control function for the house is given by the Eq.9. [14] 

 

                                                 Pl,i+Pc,i ≤ DLi                                                                            (9) 

 

Where 

 

Pl,I is the power consumption of all non-critical loads in time step i in KW. 

                          Pl,i =  ∑ Plj,i
N
j=1 (Lj = Controllable loads)                                                       (10)  

 

Pc,i is the power consumption of all critical loads in time slot i, in KW. 

                         Pc,i =  ∑ PCk,i
K
j=1 (Ck = Critical loads)                                                             (11)  

 

DL iis the demand limit imposed by the utility in time slot i in KW.     
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When the demand limit is above than the total load or there is an end of demand response (DR) program all the non-critical power 

intensive loads will operate in normal way. This called as load   scheduling and peak shifting.  

 

4. PROPOSED OBJECTIVE FUNCTION AND ITS CONSTRAINTS 

The objective function is minimizing the energy consumption cost with the considerations of the constraints and consumer’s 

comfort. The minimization of the objective function is according to the Eq. 12. 

 

                                Objective function  = min(f)                                                                       (12) 

                               f = Total cost (T) + Penalty function (P)                                                      (13) 

               Total cost  (T)         =      ∑ Pr(𝑡)  𝑇
𝑡=1 [EAC(t)+EEV(t)+EWH(t)+ECD(t)+ECr(t)]                 (14) 

               Penalty function (P)  =    ∑ Pr(𝑡)  𝑇
𝑡=1 [Total cost (t)- DL(t)]                                      (15) 

 

Objective function is the total cost of 1440min (24hr) and penalty function is also added. Penalty function is defined for the total 

power consumption at each min. Power consumption is checked with demand limit (DL). DL vary with time and it imposed by the 

utility. If it exceeds the DL penalty is added in the form of cost in the objective function. 

 

Constraints 

The room temperature of the AC TAC (t) and the outlet water temperature of the WH TWH (t) is restricted in between minimum and 

maximum values. SOC of an EV battery varies from initial charge to the maximum charge. The accumulated time of the drying 

operation (min) is less than the required time /duration of the drying operation (min) of the CD. The different constraints for 

minimization of fitness function has been categories and shown in Table 4 according to the consumers comfort setting. 

 

                                             𝑇𝐴𝐶
𝑚𝑖𝑛(𝑡) <  𝑇𝐴𝐶(𝑡) < 𝑇𝐴𝐶

𝑚𝑎𝑥(𝑡)                                                      (16) 

                                             𝑇𝑊𝐻
𝑚𝑖𝑛(𝑡) <  𝑇𝑊𝐻(𝑡) < 𝑇𝑊𝐻

𝑚𝑎𝑥(𝑡)                                                    (17) 

                                𝑆𝑂𝐶𝐸𝑉
𝑚𝑖𝑛(𝑡) <  𝑆𝑂𝐶𝐸𝑉(𝑡) < 𝑆𝑂𝐶𝐸𝑉

𝑚𝑎𝑥(𝑡)                                                    (18) 

                                               TAccumulated <  Trequired                                                             (19) 

 

Table 4 Consumer Comfort Setting 

Type Residential appliances Characteristics & requirement 

1st category 
Critical loads 

 

24 hours power consumption 

profile 

2nd category 
Washing Machine(WM) 

 

Work Time[7-10AM,7-10PM] 

75min without interruption on 

3rd category 
Water Heater (WH) 

 

4times on in a day 

Work Time[7-7:10, 8:00-8:10, 20-

20:15, 21-21:15] 

 
Air Conditioner(AC) 

 

Room temperature is kept between 

fixed interval over a duration of 

24hrs 

4th category 
Electric vehicle(EV) 

 

Charging in 4 hrs in anytime 

between 6PM- 6AM 

 

Table 4 shows the convenience preferences of the consumer. The consumer set the comfort setting of different appliances like 

critical loads switch on in any time without any delay. WM turns on for 75min between 7AM to 10AM and 7PM-10PM. Once it get 
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started in any mentioned time span WM completed its job without any intervention. Consumer turns on WH 4 times a day at above 

mentioned time in Table4. AC kept the specified room temperature over a duration of 24hrs. EV takes 4hrs to completely charge its 

battery and it can schedule in anytime between 6PM to 6AM. 

 

4.1. Salp Swarm Optimization (SSA) 

SSA is a recently swarm intelligence algorithm developed in 2017 by Mirjalili at. El. SSA is a population based method. SSA behaves 

like mimic of salp swarms in oceans. It is kind of salpidae that have a transparent barrel shaped body and similar tissues like 

jellyfishes structure. They are living in deep oceans and moving by water forces to find their food which organized as swarms 

called salp chains. It is categorized into two parts: one is leader salp and others are followers [12]. 

 

4.1.1. Main steps of Salp algorithm 

The algorithmic steps are:- 

Parameter initialization 

The algorithm starts by initializing the parameters such as population size, no of iterations N and maximum no of iterations maxitr. 

 

Initial Population 

We generate the initial population xi , i = {1,.....,n} randomly in the range [u,l] where u , l are upper and lower boundaries 

respectively. 

 

Individual evaluation 

Each individual (sol) in the population are evaluated by calculating its value using the objective function and the overall best 

solution is assigned to F. 

 

Exploration and exploitation 

c1 plays an influential role in SSA. It maintain exploration and exploitation. The estimation of c1 is appeared as: 

 

                                                𝑐1 = 2𝑒−(
4𝑙

𝐿
)2

                                                          (20) 

 

Where, l is the present iteration and L is the max no of iterations.c2 and c3 are randomly generate in the interval [0,1] 

 

Upgrade the leader and follower position of the solution 

The leader position updated according to Eq. (21) and the follower are updated respectively as shown in Eq. (23) 

 

               𝑥𝑗
1 =   {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗  ) 𝑐2   ≥   0

𝐹𝑗− 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗  ) 𝑐2   <   0
}                                  (21) 

 

Where  𝑥𝑗
1 position of the 1st leader salp in the jth dim. Fj is the food source, ub and lb are upper and lower bound respectively, c1 c2 

c3 are the random numbers. 

 

                                𝑥𝑗
𝑖 =  

1

2
𝑎𝑡2 + 𝑣𝑜𝑡                                                                     (22) 

 

Where i ≥2,  𝑥𝑗
𝑖 is the location of ith follower in jth dimension,, t is the time , vo is the initial speed and a = vfinal/ vo. if iteration is equal 

to 1 and vo=0 this can be expressed as 

 

                                    𝑥𝑗
𝑖 =  

1

2
( 𝑥𝑗

𝑖 +  𝑥𝑗
𝑖−1)                                                           (23)  
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Boundaries violations and termination criteria 

If any solution violates the range of search space during the update process, it returns back in the range of the problem. The no of 

iterations is increased gradually until is reaches to the max no of iterations. Then the algorithm terminates the search process and 

produce the overall best solution found so far [12]. 

 

4.1.2. Case 1: Mathematical Problem 

This problem has been used as a benchmark constrained optimization problem. The problem can be stated as follows [12]: 

 

Function  Dim Range Shift Position fmin 

𝐹2(𝑥) =  ∑ |𝑥𝑖

𝑛

𝑖=1

| + ∏ |𝑥𝑖

𝑛

𝑖=1

|   20 [-10,10] [-3,-3,…….,-3] 0 

 

Objective function 

                                              Minimize : fobj = @F2                                                                  (24) 

Subject to: 

                                                        lb = -10 , ub = 10 , dim= 10                                           (25) 

x= -100:3:100, y=x 

Search Agents no N       =   30;                          % Number of search agents 

Function name   fobj      =   'F1';                         % Name of the test function 

Maximum iteration                 =   1000; 

  

For this problem, the best score and the best_ position for N= 30 obtained by SSA are given as follows: 

 

Best score  Best position 

5.8154e-06 

1.0e-05 * 

 0.0414   -0.0230   -0.1198   -0.0951    0.1022   -0.1025    0.0127    0.0530    

0.0314   -0.0004 

 

The mathematical problem successfully finds the global minimum. 

 

Salp Swarm Algorithm Convergence Curve 

The primary qualitative outcome in Fig.1 shows the search history of search agents in SSA through the span of iterations. Search 

history figure generally shows the position of all agents during optimization. It observes the sampled regions of the search space by 

an algorithm and the probable search patterns in the entire swarm. Examining search history it is clear that the SSA algorithm tests 

the utmost favorable area of search space. Examining the convergence curve in Fig.1 it is clear that the fitness of the estimation of 

the global optimum got in every iteration is improved by the SSA algorithm over the span of iterations. The convergence curve is 

very smooth and steady which shows SSA profits by high exploitation and convergence. It initially investigates the search space 

afterwards exploits it. The accuracy of SSA improves by legitimate equalization of exploration/ local optima avoidance and 

exploitation/ convergence [12]. 
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Fig.1 Simulation Result of the SSA Convergence Curve 

 

 

Table 5 Results of the algorithm on the test function 

F SSA PSO BA 

 average St deviation average St deviation average St deviation 

F2 0.2272 1.0000 0.2858 0.0867 1.0000 0.4826 

 

From the Table 5 it is clear that the SSA gives a comparatively better result than other algorithm in average and standard 

deviation [12]. 

 

5. SIMULATION RESULTS AND DISCUSSIONS 

Parameters and their values used to determine the load profiles and the consumer convenience are as follows in Table 6. These are 

used to calculate the values of the developed load models. 

 

Table 6 Parameters and their values 

Parameters Parameters value  

Electric Vehicle(EV)  

Parameter Battery size Energy 

available 

All electric range Charge power 

Nissan Leaf [14] 24 KWh 19.2KWh 100mi (LA4 mode) 3.3KW 

Clothes Dryer(CD)  

Phc 3.7KW [15] 

Pm 0.3KW [15] 

M 5 

Electric Water Heater(EWH)  

      TWH,s 118 oF [16] 

     ∆TWH 10 oF 

      Tinlet 68 oF (Assumed to be same as ground temperature)[17] 

     ηWH 0.85 

       fri A typical hot water usage profile  assumed for three 

people in the house.  
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      Atank  14ft2 

      Vtank 80 gallons[18] 

       Rtank 16 oF. ft2 .h/Btu [18] 

       ∆t 1 minute 

       PWH,i 4KW 

       Space Cooling / Heating   

     ∆T 4 oF 

      Tout,i 93 oF  

      Ts 68 oF  

     PAC 2.352KW 

     CHV,AC According to ASHRAE handbook[19] 

       Rwall, Rceiling, Rwindow 16 oF. ft2 .h/Btu 

      Aceiling 2664ft2 

      Awall 1564ft2 

      Awindow 228ft2 

 

The start time of the charging of EV is 6pm and 1 min interval is used. While the initial state of charge of the battery is 

considered as 40%. The battery is fully charged in 4hrs. The operation of the CD completed in 90 minutes. Once it get started it 

should not interrupt in between its working. The EWH turns on 4 times in a day. The room temperature is kept between fixed 

interval over a duration of 24hrs for AC. The outdoor temperature TooC for 24 hours is used from previous study [20]. Real time 

prices in US [22] are selected for the case study. 

A Matlab program for the proposed EMS algorithm have been developed by considering the operation of non-critical power 

intensive load model. In this simulation tool, 24 hour period is taken in to consideration and the reference starting time is taken as 6 

a.m.  

The operation of non-critical loads and the total household power demand with the control strategy of the EMS based on 

demand limits and priorities of the loads are observed and the obtained results are presented.  

 

Before Demand Response  

• The total household load in which the critical and non-critical loads are include without EMS the maximum power demand of 

the household is 14.652 kW and it occurs during 7.00 p.m. – 7.14 p.m.  

• The total energy consumption of the selected day which is obtained is 87.0395 kWh.  

• Typical average electricity energy consumption of the household in this case is 3.6266 kWh and the load factor is 24.75%.  

 

 
 

Fig.2 The Total household power demand before scheduling 
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After Demand Response 

The scheduling of the home appliances with and without optimization methods. The total household power demand with the home 

energy management algorithm considering load priorities, consumer comfort and demand limit level and without optimization is 

shown in Fig.2, and with optimization scheduling of the total household with HEMS algorithm in Fig.3. The peak load of the 

household has been reduced from 14.6520 kW to 8.6 kW. The total household power demand with BSSA is shown in Fig.4. The peak 

load of the household has been reduced from 14.6520 kW to 8.30 kW by BSSA which is more reduction as compare to other 

methods. 

 

 
 

Fig.3 Total Household Power Demand after scheduling by HEMS algorithm 

 

 

 

 
Fig.4 Scheduling of Total Household Power Demand by BSSA 

 

Comparison of BPSO and BSSA for Scheduling of Residential Controlled Loads Electricity Cost Minimization 

Binary Salp Swarm Optimization (BSSA) showed better convergence characteristics than the Binary Particle Swarm Optimization 

(BPSO). While the BSSA in Fig.5 starts converging at about the 20th iteration, the BPSO in Fig.5 starts to converge at about the 40th 

iteration. Both the optimization gives a best result of convergence but the binary salp swarm algorithm outperforms the BPSO and 

the scheduling algorithm without optimization due to modified sigmoidal function. The deviation due to difference of values in 

two optimization algorithm is 0.388%. Thus, it is clear that the daily energy cost has been reduced by 33% by use of BSSA. The 

proposed salp swarm algorithms outperforms in a better way as compare to the other two methods and due to that consumer saves 

on the electricity bill. 

 



INDIAN JOURNAL OF ENGINEERING l RESEARCH ARTICLE 

ISSN 2319–7757  EISSN 2319–7765 l OPEN ACCESS 

P
ag

e3
4

0
 

 
 

Fig.5 The Energy Cost Convergence Curve 

 

Table 7 Comparative Results of the Scheduling Algorithms 

Methods  Energy Cost(cents) Maximum Demand(KW) % Saving 

Scheduling without EMS 451.965 14.652  

Scheduling with EMS 407.0324 8.60 34.48% 

Scheduling with 

Optimization 
398.311 8.30 33% 

 

The home energy management (HEM) algorithms with and without optimization efficiently shift the operational time of the 

appliances to the off peak hours and gained saving in electricity cost. Table 7 shows that the proposed BSSA algorithm outperforms 

in reducing the daily energy consumption cost. 

 

6. CONCLUSION 

In the power system network DSM acts a significant part in shifting the consumption pattern to non-peak period. With the growth 

towards the smart grid system specially in the DISCOM there is an immediate need for load models, that can aid in the analysis of 

change in electrical energy consumption with respect to consumer reactions and demand limits given by several utility. The 

proposed algorithm for optimum home appliances scheduling can manage the non-critical loads without affecting and violating the 

consumers comfort preferences. EMS can switch the appliances from high demand hours to low demand hours by considering the 

real time pricing. The scheduling algorithm results in electricity bill savings and improve the load factor and mitigate the maximum 

demand from peak hours. Hence the stability of the grid can be improved and the risk of failures in the distribution network can be 

reduced without compromising the customer comfort. 

 

The different abbreviations have been used in this paper which is given in Table 1 and Table 2 of nomenclature. 
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Nomenclature 

Table 1                                                                          

𝑇𝑖𝑛𝑙𝑒𝑡  is inlet water temperature (oF) 

𝑇𝑎 is the ambient temperature (oF) 

𝑓𝑟𝑖 hot water flow rate in time slot i (gpm) 

𝐴𝑡𝑎𝑛𝑘 surface area of the tank (ft2) 

𝑉𝑡𝑎𝑛𝑘   volume of the tank (ft3) 

𝑅𝑡𝑎𝑛𝑘 heat resistance of the tank (oF.ft2.h/Btu) 

∆𝑡 is the duration of the time slot i (hours) 

𝑃𝑊𝐻,𝑖   referes to power consumption of the water 

heater (kW) in time slot i 

𝑃𝑊𝐻   is the rated power of the water heater (kW) 

𝑊𝑊𝐻,𝑖 refers to status of the water heater in time slot i 

𝜂𝑊𝐻    is the efficiency factor 

WAC,i is the  status of AC unit in time slot,i 

Ti  room temperature in time slot i(oF) 

TAC,s thermostat set point of AC unit (oF) 

∆TAC  refers to allowable temperature deviation / dead 

band of the AC unit (oF) 

𝑃𝐴𝐶,𝑖   power consumption of the AC(kW) in time slot i 

𝑃𝐴𝐶  Rated power of the AC(kW) 

∆𝑡 length of the time slot i( hours) 

𝐺𝑖 heat gain rate of the house during time slot i, 

positive value results in an increase in room 

temperature and negative value results in a decrease 

in room temperature(Btu/h) 

𝐶𝐻𝑉,𝐴𝐶 cooling / heating capacity , positive for heating 

and negative for cooling(Btu/h) 

∆𝑐 energy needed to change the temperature of the air 

in the room by 1oF(Btu/ oF) 

𝐴𝑤𝑎𝑙𝑙   is the area of the wall (𝑓𝑡2) 

𝑅𝑤𝑎𝑙𝑙  heat resistance of the wall (oF.ft2.h/Btu) 

𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔 area of the ceiling (ft2 ) 

𝑅𝑐𝑒𝑖𝑙𝑖𝑛𝑔 heat resistance of the ceiling (oF.ft2.h/Btu) 

𝐴𝑤𝑖𝑛𝑑𝑜𝑤 area of the window(ft2 ) 

𝑅𝑤𝑖𝑛𝑑𝑜𝑤  heat resistance of the window(oF.ft2.h/Btu) 

𝑃𝐶𝐷,𝑖   is  power consumption of the clothes dryer(KW) 

in time slot i 

𝑃ℎ𝑐   denoted rated power of the heating coils of the 

clothes dryer(KW) 

𝑊𝐶𝐷,𝑖  refers to status of the clothes dryer in time slot i 

𝑘  drying level with several possibilities as (k= 1/M, 

2/M ,…..,M/M) 

𝑃𝑚              power consumption of the motor part of the 

clothes dryer(KW) 

 

Table 2 

M             total no of drying levels 

𝑃𝐸𝑉,𝑖   is power consumption of the electric 

vehicle(kW) in time slot i 
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𝑃𝐸𝑉  Rated power of the electric vehicle (kW) 

𝑊𝐸𝑉,𝑖 highlights the status of the electric vehicle in 

time slot i 

𝑆𝑂𝐶0   initial charge state of the battery 

𝑆𝑂𝐶𝑖   charge state of the battery in time slot i 

𝑆𝑂𝐶𝑖−1 charge state of the battery in time slot i-1 

𝐸𝑑𝑟  energy used in driving (KWh) 

𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦  Rated capacity of the battery (KWh) 

𝑃𝐸𝑉 charge power of the electric vehicle (KW) 

∆𝑡  length of the time slot i (minutes) 

𝐷𝑊𝐻,𝑖 Control signal received by the water heater 

from EMS  in time slot i 

𝐷𝐴𝐶,𝑖      control signal received by the AC from EMS  

in time slot i 

𝐷𝐶𝐷,𝑖  is the control signal received by the clothes 

dryer from EMS  in time slot i 

𝐷𝐸𝑉,𝑖                    control signal received by the electric 

vehicle from EMS  in time slot i 

EAC(t)     energy consumption of the AC in time slot t 

EEV(t)     energy consumption of the Electric 

Vehicle(EV) in time slot t 

EWH(t)     energy consumption of the Water 

Heater(WH) in time slot t 

ECD(t)     energy consumption of the Cloth Dryer(CD) 

in time slot t 

ECR(t)     energy consumption of the Critical Load(Cr) 

in time slot t 

Pr(t)        real time price in time slot t 

DL(t)       demand limit in time slot t 
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