Indian Journal of Engineering

ISSN 2319 — 7757 EISSN 2319 -7765

A study on undirected minimum cost spanning
tree

Publication History

Received: 04 August 2015

Accepted: 21 August 2015

Published: 1 September 2015 (Special issue)

Citation
Jasmine Priskilla D. A study on undirected minimum cost spanning tree. Indian Journal of Engineering, 2015, 12(30), 176-186

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

ANALYSIS

Page]. 76

https://creativecommons.org/licenses/by/4.0/

A study on undirected minimum cost spanning tree

D. Jasmine Priskilla
Research scholar, Bharathiyar University, priskillajas@yahoo.com

ABSTRACT

Minimum spanning tree can be obtained for connected weighted edges with no negative
weight using classical algorithms such as Prim’s and Kruskal. This paper presents a
comparison study on the classical and the more recent algorithms with different techniques.
This paper also contains comparisons of MST algorithm and their advantages and
disadvantages.

Keywords — Graph, MST, Tree, Kruskal, Prim, Undirected graph

I. INTRODUCTION

The minimum spanning tree (MST) problem is, given a connected, weighted, and undirected
graph G =(V; E; w), to find the tree with minimum total weight spanning all the vertices V.
Here w: E -> R is the weight function. The problem is frequently defined in geometric terms,
where V is a set of points in d-dimensional space and w corresponds to Euclidean distance.
The main distinction between these two settings is the form of the input. In the graph setting
the input has size O(m + n) and consists of an enumeration of the n = |V| vertices and m = |E|
edges and edge weights. In the geometric setting the input consists of an enumeration of the
coordinates of each point (O(dn)space):all (Y2) edges are implicitly present and their weights

implicit in the point coordinates

1.1 Applications of MST
Boruvka invented the MST problem while considering the practical problem of electrifying
rural Moravia(present day Czech Republic) with the shortest electrical network. MSTs are
used as a starting point for heuristic approximations to the optimal traveling salesman tour
and optimal Steiner tree, as well as other network design problems. MSTs are a component in
other graph optimization algorithms, notably the single-source shortest path algorithms of
Thorup [2] and Pettie—-Ramachandran [1]. MSTs are used as a tool for visualizing data that is
presumed to have a tree structure; for example, if a matrix contains dissimilarity data for a set

of species, the minimum spanning tree of the associated graph will presumably group closely

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page]. 77

https://creativecommons.org/licenses/by/4.0/

related species; see [3]. Other modern uses of MSTs include modeling physical systems [5]

and image segmentation [4].

1.2 Objective of MST

e To minimize cost of the tree spanning tree for both directed and undirected.
e To minimize load on the network.

e To eliminate the cycle from the graph from the MST.

e To improve the complexity of the MST.

I1. MST ALGORITHMS

There are various classical algorithms available which describe below.

Kruskal’s and Prim's algorithm is a greedy algorithm which used to find a minimum
spanning tree for a connected weighted undirected graph. This means when the total
weight of all the edges is minimized in the tree, at that time it finds a subset of the edges

which forms a tree which includes every vertex.

2.1 Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm in graph theory that finds a minimum spanning
tree for a connected weighted graph. It finds a subset of the edges that forms a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized.

This algorithm is directly based on the MST(minimum spanning tree) property.

Example

/}ﬁ /i

3 2 2)
/—'X \
%) = :;_E/j .-' P,
A Simple Weighted Graph Minimum-Cost Spannlng Tree

Page 1 78

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Weighted_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Tree_%28graph_theory%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29

Kruskal's Algorithm

MST-KRUSKAL(G, w)

A—0J

for each vertex v V[G]
do MAKE-SET(v)

sort the edges of E into nondecreasing order by weight w
for each edge (u, v) E, taken in nondecreasing order by
weight

do if FIND-SET(u) # FIND-SET(V)
then A — A {(u, v)}
UNION(u, v)

ok w0 e

© o N o

return A

Example

(2 p—— E)
Stepl. Edges are sorted in ascending
order by weight.
Edge No. Vertex Pair Edge
Weight
El (0,2) 1
E2 (3,5) 2
E3 (0,1) 3
E4 (1,4) 3
E5 (2,5) 4
E6 (1,2) 5
E7 (2,3) 5
E8 0,3) 6
E9 (2,4) 6

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page 1 79

https://creativecommons.org/licenses/by/4.0/

E10 (4,5) 6

Step2. Edges are added in sequence.

Graph @

e
&)
Add Edge E1 _
@
i
Add Edge E2
Add Edge E3

Page180

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

\ 1 I.'\--.3 /
Add Edge E4

3 .2| 2

& p |

1 3
Add Edge E5
; (= :] ,
- K
=S -

Total Cost = 1+2+3+3+4 =13
Running Time = O(m log n) (m = edges, n = nodes)

Testing if an edge creates a cycle can be slow unless a complicated data structure called a
“union-find” structure is used. It usually only has to check a small fraction of the edges,
but in some cases (like if there was a vertex connected to the graph by only one edge and it
was the longest edge) it would have to check all the edges. This algorithm works best, of
course, if the number of edges is kept to a minimum.

Advantages are:

1) Easy to understand

2) Give good result for large number of vertices and edges.

Disadvantages are:

1) Difficulty of checking whether arcs form cycles makes it slow and hard to program

2) Same weight may increase the complexity.

Page]. 8 1

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

Prim's
Algorithm

Prim's

algorithm is a
greedy algorithm that finds a minimum spanning tree for a connected weighted
undirected graph. It finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized. This algorithm is
directly based on the MST(minimum spanning tree) property.

Prim's Algorithm

MST-PRIM(G, w, r)

1. foreachuV [G]

2. dokey[u] «— o

3. m@u] « NIL

4. key[r] <0

5 Q<VIG]

6. whileQ+0

7. do u «— EXTRACT-MIN(Q)

8. for each v Adj[u]

9. do if v Q and w(u, V) < key[Vv]
10. then n[v] < u

11. key[v] < w(u, V)

Procedure for finding Minimum Spanning Tree

Stepl (o)
No. of Nodes 0 1 2 3 4 A‘
Distance 0 3 1 6 0 A

I"‘-\E_/"I

Distance From

Step2 (o
7
Distance 0 3 0 6 D
Distance From 0 2 2 1
No. of Nodes 0 1 2 3 4 5

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page]. 82

https://creativecommons.org/licenses/by/4.0/

Step3 /
o 1 2 3 4 @

No. of Nodes) 1
Distance 0 0 0 5 3 ;5
Distance From 2 1

Step4 ; / l

No. of Nodes 0 1 2 3 4 5 @
Distance 0 0 0 5 0 [
Distance From 2 & <,
Step5 /o

No. of Nodes 0 1 2 3 4 @ ‘1 2)
Distance 0 0 0 3 0 5 oo 5
Distance From 2 —\

Minimum Cost = 1+2+3+3+4 =13

Running Time = O(m + n log n) (m = edges, n = nodes)

If a heap is not wused, the run time will be O(nN"2) instead of
O(m + n log n). However, using a heap complicates the code since you’re complicating
the data structure. A Fibonacci heap is the best kind of heap to use, but again, it

complicates the code.

Unlike Kruskal’s, it doesn’t need to see the entire graph at once. It can deal with it one
piece at a time. It also doesn’t need to worry if adding an edge will create a cycle since

this algorithm deals primarily with the nodes, and not the edges.

For this algorithm the number of nodes needs to be kept to a minimum in addition to the
number of edges. For small graphs, the edges matter more, while for large graphs the

number of nodes matters more.

Advantages are:

1) Easy to understand.

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page]. 83

https://creativecommons.org/licenses/by/4.0/

2) Root node is selected so clear about the starting node.

Disadvantages are:

1) Time taken to check for smallest weight arc makes it slow for large numbers of nodes.
2) Difficult to program, though it can be programmed in matrix form

3) Same weight may increase the complexity when one of the weights is eliminated in a
cycle

1. LITERATURE SURVEY

In this section, lot of research works has been recorded from past few years. They are

presented here:

Modified prim’s algorithm:
In this algorithm, Instead of choosing randomly, root node is chosen with minimum edge
weight. Remaining procedure is same as used by prims. Due to this only minimum weight

edges are included. Although complexity remains same as prim’s algorithm.

Advantages are:
It gives slightly better performance in case where minimum weight edge is required from

the starting phase of minimum spanning tree formation.

Disadvantages are:

Complexity is remaining same.

Visit, Mark and Construct MST algorithm:

In this algorithm, adjacency matrix is used which help to reduce the step at the time of
constructing MST. This method is based on the Kruskal algorithm with modification which
used improve the complexity of the MST algorithm for the undirected graph. This method is
purely for the undirected graph. So the weight of the 1 to 2 vertices is same for the 2 to 1
vertices. See the below Fig.1. In which edges 1 to 2 contain 52 weights and the weight for the

edges 2 to 1 is also 52.So, it is same for undirected graph.

sensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

0 582 10 16
22 0 9 5
10 9 O 9

Page 1 84

https://creativecommons.org/licenses/by/4.0/

Fig.1 n*n weighted matrix

Now for the vertices 1 to 1, 2 to 2....n to n. there is no weight and if there is a weight then
it automatically removed because of generating a cycle. So, it places 0 as infinite. Now if we
have n vertices then we have n*n adjacency matrix. So, need to perform n"2 steps, because it
will check all the elements from the graph. So, author first removes unused row column from
the adjacency matrix. Here first row and last column are never used during the
implementation because edges 1 to 2 has the same 2 to 1 and edges 1 to 1 is always 0 or
automatically eliminated because of generating cycle. So, adjacency matrix has (n-1) rows
and (n-1) columns. See the below adjacency Fig.2 and Fig.3.

O]
5 0 9 5
0 9 0 2
16 5 2 0]

Fig.2 Reducing the n*n order matrix to order m*m where m = (n-1)
52 10 16
0 9 5
9 0 2

Fig.3 m*m operational weight Matrix

So, n"2— 2n +1 steps will be performed. So, complexity is O (m”"2) where m is (n-1) [7].
This algorithm works in the following two passes. 1) Mark Phase: In which algorithm marks
the candidate edge from the graph for the minimum spanning tree. 2) MST Construction
Phase: In the second phase, the algorithm constructs the desired minimum spanning tree T
including only the marked edges from the upper triangular weight matrix M, which were

marked during Marking Pass.

In this algorithm, minimum weight are marked and visited first. Once weight is visited
and it doesn’t create a cycle then it will be added to the list of minimum spanning tree edges.

Otherwise it will be removed and next minimum weight should be taken for the further

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page]. 8 5

https://creativecommons.org/licenses/by/4.0/

procedure. This will happen till n-1 edges get for the minimum spanning tree edges. Once the

n-1 edges are get than it will stop algorithm and calculate total cost.

Advantages are:

Complexity is O(n) for the best case.

Disadvantages are:

Complexity is O(n”"2) for the best case.

IVV. CONCLUSION

This paper presents classical algorithms and advance MST algorithm and it is observed that

complexity is very high because of cycle in the graph and the edges with the same weight. It

also observed that complexity can be improved using following steps. 1) Marked and visit the

maximum weight of the edges. 2) If it creates a cycle then eliminate those edges from the

current graph. 3) Above two steps will be repeated till edges = vertices-1. Prim’s algorithms

span from one node to another while Kruskal’s algorithm select the edges in a way that the

position of the edge is not based on the last step. In prim’s algorithm, graph must be a

connected graph while the Kruskal’s can function on disconnected graphs too. Prim’s

algorithm has a time complexity of O(V?), and Kruskal’s time complexity is O(logV).

References

1. Pettie, S., Ramachandran, V.: A shortest path algorithm for real weighted undirected
graphs. SIAM J. Comput. 34(6), 1398-1431 (2005)

2. Thorup, M.: Undirected single-source shortest paths with positive integer weights in
linear time. J. ACM 46(3), 362-394 (1999)

3. Graham, R.L., Hell, P.: On the history of the minimumspanning tree problem. Ann.
Hist. Comput. 7(1), 43-57 (1985)

4. lon, A., Kropatsch, W.G., Haxhimusa, Y.: Considerations regarding the minimum
spanning tree pyramid segmentation method. In: Proc. 11th Workshop Structural,
Syntactic, and Statistical Pattern Recognition (SSPR). LNCS, vol. 4109, pp. 182—
190. Springer, Berlin (2006)

5. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on
Euclidean minimum spanning trees. Combust. Flame 115(4), 487-514 (1998)

6. http://scanftree.com/Data_Structure/prim’s-algorithm

7. http://delab.csd.auth.gr/~manolopo/graph/Lec9_MST.ppt

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Page]. 86

https://creativecommons.org/licenses/by/4.0/

