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ABSTRACT 

 

Minimum spanning tree can be obtained for connected weighted edges with no negative 

weight using classical algorithms such as Prim’s and Kruskal. This paper presents a 

comparison study on the classical and the more recent algorithms with different techniques. 

This paper also contains comparisons of MST algorithm and their advantages and 

disadvantages. 
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I. INTRODUCTION 

 

The minimum spanning tree (MST) problem is, given a connected, weighted, and undirected 

graph G =(V; E; w), to find the tree with minimum total weight spanning all the vertices V. 

Here w: E -> R is the weight function. The problem is frequently defined in geometric terms, 

where V is a set of points in d-dimensional space and w corresponds to Euclidean distance. 

The main distinction between these two settings is the form of the input. In the graph setting 

the input has size O(m + n) and consists of an enumeration of the n = |V| vertices and m = |E| 

edges and edge weights. In the geometric setting the input consists of an enumeration of the 

coordinates of each point (O(dn)space):all (v
2) edges are implicitly present and their weights 

implicit in the point coordinates 

 

1.1 Applications of MST 

Boruvka invented the MST problem while considering the practical problem of electrifying 

rural Moravia(present day Czech Republic) with the shortest electrical network. MSTs are 

used as a starting point for heuristic approximations to the optimal traveling salesman tour 

and optimal Steiner tree, as well as other network design problems. MSTs are a component in 

other graph optimization algorithms, notably the single-source shortest path algorithms of 

Thorup [2] and Pettie–Ramachandran [1]. MSTs are used as a tool for visualizing data that is 

presumed to have a tree structure; for example, if a matrix contains dissimilarity data for a set 

of species, the minimum spanning tree of the associated graph will presumably group closely 
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related species; see [3]. Other modern uses of MSTs include modeling physical systems [5] 

and image segmentation [4]. 

 

1.2 Objective of MST  

 

• To minimize cost of the tree spanning tree for both directed and undirected.  

• To minimize load on the network.  

• To eliminate the cycle from the graph from the MST.  

• To improve the complexity of the MST.  

 

II. MST ALGORITHMS 
  

There are various classical algorithms available which describe below. 

Kruskal’s and Prim's algorithm is a  greedy algorithm which used to find a  minimum  

spanning tree for a  connected  weighted  undirected  graph. This means when the total 

weight of all the  edges is minimized in the tree, at that time it finds a subset of the  edges 

which forms a  tree which includes every  vertex. 

2.1 Kruskal's Algorithm 

 
Kruskal's algorithm is a greedy algorithm in graph theory that finds a minimum spanning 

tree for a connected weighted graph. It finds a subset of the edges that forms a tree that 

includes every vertex, where the total weight of all the edges in the tree is minimized. 

This algorithm is directly based on the MST( minimum spanning tree) property. 

 

Example 

                                                
   A Simple Weighted Graph                            Minimum-Cost Spanning Tree 
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Kruskal's Algorithm 
 
 

MST-KRUSKAL(G, w) 

1.      A ← Ø 

2.      for each vertex v V[G] 

3.              do MAKE-SET(v) 

4.      sort the edges of E into nondecreasing order by weight w 

        5.      for each edge (u, v) E, taken in nondecreasing order by  

                                                   weight 

6.              do if FIND-SET(u) ≠ FIND-SET(v) 

7.                      then A ← A {(u, v)} 

8.                              UNION(u, v) 

9.      return A 
 
Example 

                          

Step1. Edges are sorted in ascending 

order by weight. 

 
Edge No. 

 
Vertex  Pair 

 
Edge 

Weight 
 

E1 
 

(0,2) 
 
1 

 
E2 

 
(3,5) 

 
2 

 
E3 

 
(0,1) 

 
3 

 
E4 

 
(1,4) 

 
3 

 
E5 

 
(2,5) 

 
4 

 
E6 

 
(1,2) 

 
5 

E7 (2,3) 5 

E8 (0,3) 6 

E9 (2,4) 6 
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E10 (4,5) 6 

 

 

Step2. Edges are added in sequence. 

 

 

 

Graph 

 
 

Add Edge E1 

 

Add Edge E2 

 

Add Edge E3 
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Add Edge E4 

 

Add Edge E5 

 
            Total Cost = 1+2+3+3+4 = 13       

   Running Time =  O(m log n)             (m = edges, n = nodes) 

Testing if an edge creates a cycle can be slow unless a complicated data structure called a 

“union-find” structure is used. It usually only has to check a small fraction of the edges, 

but in some cases (like if there was a vertex connected to the graph by only one edge and it 

was the longest edge) it would have to check all the edges. This algorithm works best, of 

course, if the number of edges is kept to a minimum. 

 

      Advantages are:  

1) Easy to understand  

 

2) Give good result for large number of vertices and edges.  

 

Disadvantages are:  

1) Difficulty of checking whether arcs form cycles makes it slow and hard to program  

 

2) Same weight may increase the complexity.  

 

 

https://creativecommons.org/licenses/by/4.0/


 

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0). 

P
ag

e1
8

2
 

 

 

 

 

Prim's 

Algorithm 

 
Prim's 

algorithm is a 

greedy algorithm that finds a minimum spanning tree for a connected weighted 

undirected graph. It finds a subset of the edges that forms a tree that includes every 

vertex, where the total weight of all the edges in the tree is minimized. This algorithm is 

directly based on the MST( minimum spanning tree) property. 

    Prim's Algorithm 

 

MST-PRIM(G, w, r) 

1.      for each u V [G] 

2.      do key[u] ← ∞ 

3.      π[u] ← NIL 

4.      key[r] ← 0 

5.      Q ← V [G] 

6.      while Q ≠ Ø 

7.              do u ← EXTRACT-MIN(Q) 

8.                      for each v Adj[u] 

9.                              do if v Q and w(u, v) < key[v] 

10.                                     then π[v] ← u 

11.                                             key[v] ← w(u, v) 

 

Procedure for finding Minimum Spanning Tree 

 

Step1 
 

 No. of Nodes 0 1 2 3 4 5 

 Distance 0 3 1 6 ∞ ∞ 

 Distance From  0 0 0   
 

 

            

 

Step2 
 

    No. of Nodes            0       1       2       3       4       5 

 
 

    Distance    0 3 0 5 6 4 

    Distance From  0  2 2 2 
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Step3 

 

No. of Nodes 0 1 2 3 4 5 

Distance 0 0 0 5 3 4 

Distance From    2 1 

 

 

 

 

 

2 
 

   
 

 

Step4 

 

No. of Nodes 0 1 2 3 4 5 

Distance 0 0 0 5 0 4 

Distance From    2 

 

 

 2 
 

    
      

     Step5 

 

No. of Nodes 0 1 2 3 4 5 

Distance 0 0 0 3 0 0 

Distance From    2  2 
 

 
 

Minimum Cost = 1+2+3+3+4 = 13 

 

Running Time =  O(m + n log n)             (m = edges, n = nodes) 

If a heap is not used, the run time will be O(n^2) instead of  

O(m + n log n).  However, using a heap complicates the code since you’re complicating 

the data structure. A Fibonacci heap is the best kind of heap to use, but again, it 

complicates the code. 

Unlike Kruskal’s, it doesn’t need to see the entire graph at once.  It can deal with it one 

piece at a time.  It also doesn’t need to worry if adding an edge will create a cycle since 

this algorithm deals primarily with the nodes, and not the edges. 

For this algorithm the number of nodes needs to be kept to a minimum in addition to the 

number of edges. For small graphs, the edges matter more, while for large graphs the 

number of nodes matters more. 

Advantages are:  

 

1) Easy to understand.  
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2) Root node is selected so clear about the starting node.  

 

Disadvantages are:  

1) Time taken to check for smallest weight arc makes it slow for large numbers of nodes.  

 

2) Difficult to program, though it can be programmed in matrix form  

 

3) Same weight may increase the complexity when one of the weights is eliminated in a 

cycle  

 

 
III. LITERATURE SURVEY 

 

In this section, lot of research works has been recorded from past few years. They are 

presented here: 

 

Modified prim’s algorithm: 

In this algorithm, Instead of choosing randomly, root node is chosen with minimum edge 

weight. Remaining procedure is same as used by prims. Due to this only minimum weight 

edges are included. Although complexity remains same as prim’s algorithm. 

 

Advantages are: 

It gives slightly better performance in case where minimum weight edge is required from 

the starting phase of minimum spanning tree formation. 

 

Disadvantages are:  

Complexity is remaining same. 

 

Visit, Mark and Construct MST algorithm: 

 

In this algorithm, adjacency matrix is used which help to reduce the step at the time of 

constructing MST. This method is based on the Kruskal algorithm with modification which 

used improve the complexity of the MST algorithm for the undirected graph. This method is 

purely for the undirected graph. So the weight of the 1 to 2 vertices is same for the 2 to 1 

vertices. See the below Fig.1. In which edges 1 to 2 contain 52 weights and the weight for the 

edges 2 to 1 is also 52.So, it is same for undirected graph. 
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Fig.1 n*n weighted matrix 

Now for the vertices 1 to 1, 2 to 2....n to n. there is no weight and if there is a weight then 

it automatically removed because of generating a cycle. So, it places 0 as infinite. Now if we 

have n vertices then we have n*n adjacency matrix. So, need to perform n^2 steps, because it 

will check all the elements from the graph. So, author first removes unused row column from 

the adjacency matrix. Here first row and last column are never used during the 

implementation because edges 1 to 2 has the same 2 to 1 and edges 1 to 1 is always 0 or 

automatically eliminated because of generating cycle. So, adjacency matrix has (n-1) rows 

and (n-1) columns. See the below adjacency Fig.2 and Fig.3. 

 
 
 
 
 
 
 
 
 
 

Fig.2 Reducing the n*n order matrix to order m*m where m = (n-1) 
 
 
 
 
 
 
 

Fig.3 m*m operational weight Matrix 

 

So, n^2− 2n +1 steps will be performed. So, complexity is O (m^2) where m is (n-1) [7]. 

This algorithm works in the following two passes. 1) Mark Phase: In which algorithm marks 

the candidate edge from the graph for the minimum spanning tree. 2) MST Construction 

Phase: In the second phase, the algorithm constructs the desired minimum spanning tree T 

including only the marked edges from the upper triangular weight matrix M, which were 

marked during Marking Pass. 

 

In this algorithm, minimum weight are marked and visited first. Once weight is visited 

and it doesn’t create a cycle then it will be added to the list of minimum spanning tree edges. 

Otherwise it will be removed and next minimum weight should be taken for the further 
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procedure. This will happen till n-1 edges get for the minimum spanning tree edges. Once the 

n-1 edges are get than it will stop algorithm and calculate total cost. 

 

Advantages are: 

Complexity is O(n) for the best case.  

 

Disadvantages are: 

Complexity is O(n^2) for the best case. 

 

IV. CONCLUSION 
 
This paper presents classical algorithms and advance MST algorithm and it is observed that 

complexity is very high because of cycle in the graph and the edges with the same weight. It 

also observed that complexity can be improved using following steps. 1) Marked and visit the 

maximum weight of the edges. 2) If it creates a cycle then eliminate those edges from the 

current graph. 3) Above two steps will be repeated till edges = vertices-1.  Prim’s algorithms 

span from one node to another while Kruskal’s algorithm select the edges in a way that the 

position of the edge is not based on the last step.  In prim’s algorithm, graph must be a 

connected graph while the Kruskal’s can function on disconnected graphs too. Prim’s 

algorithm has a time complexity of O(V2), and Kruskal’s time complexity is O(logV). 
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