

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
7

6

A study on undirected minimum cost spanning
tree

Publication History

Received: 04 August 2015

Accepted: 21 August 2015

Published: 1 September 2015 (Special issue)

Citation

Jasmine Priskilla D. A study on undirected minimum cost spanning tree. Indian Journal of Engineering, 2015, 12(30), 176-186

Indian Journal of Engineering ANALYSIS

ISSN 2319 – 7757 EISSN 2319 –7765

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
7

7

A study on undirected minimum cost spanning tree

D. Jasmine Priskilla

Research scholar, Bharathiyar University, priskillajas@yahoo.com

ABSTRACT

Minimum spanning tree can be obtained for connected weighted edges with no negative

weight using classical algorithms such as Prim’s and Kruskal. This paper presents a

comparison study on the classical and the more recent algorithms with different techniques.

This paper also contains comparisons of MST algorithm and their advantages and

disadvantages.

Keywords – Graph, MST, Tree, Kruskal, Prim, Undirected graph

I. INTRODUCTION

The minimum spanning tree (MST) problem is, given a connected, weighted, and undirected

graph G =(V; E; w), to find the tree with minimum total weight spanning all the vertices V.

Here w: E -> R is the weight function. The problem is frequently defined in geometric terms,

where V is a set of points in d-dimensional space and w corresponds to Euclidean distance.

The main distinction between these two settings is the form of the input. In the graph setting

the input has size O(m + n) and consists of an enumeration of the n = |V| vertices and m = |E|

edges and edge weights. In the geometric setting the input consists of an enumeration of the

coordinates of each point (O(dn)space):all (v
2) edges are implicitly present and their weights

implicit in the point coordinates

1.1 Applications of MST

Boruvka invented the MST problem while considering the practical problem of electrifying

rural Moravia(present day Czech Republic) with the shortest electrical network. MSTs are

used as a starting point for heuristic approximations to the optimal traveling salesman tour

and optimal Steiner tree, as well as other network design problems. MSTs are a component in

other graph optimization algorithms, notably the single-source shortest path algorithms of

Thorup [2] and Pettie–Ramachandran [1]. MSTs are used as a tool for visualizing data that is

presumed to have a tree structure; for example, if a matrix contains dissimilarity data for a set

of species, the minimum spanning tree of the associated graph will presumably group closely

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
7

8

related species; see [3]. Other modern uses of MSTs include modeling physical systems [5]

and image segmentation [4].

1.2 Objective of MST

• To minimize cost of the tree spanning tree for both directed and undirected.

• To minimize load on the network.

• To eliminate the cycle from the graph from the MST.

• To improve the complexity of the MST.

II. MST ALGORITHMS

There are various classical algorithms available which describe below.

Kruskal’s and Prim's algorithm is a greedy algorithm which used to find a minimum

spanning tree for a connected weighted undirected graph. This means when the total

weight of all the edges is minimized in the tree, at that time it finds a subset of the edges

which forms a tree which includes every vertex.

2.1 Kruskal's Algorithm

Kruskal's algorithm is a greedy algorithm in graph theory that finds a minimum spanning

tree for a connected weighted graph. It finds a subset of the edges that forms a tree that

includes every vertex, where the total weight of all the edges in the tree is minimized.

This algorithm is directly based on the MST(minimum spanning tree) property.

Example

 A Simple Weighted Graph Minimum-Cost Spanning Tree

https://creativecommons.org/licenses/by/4.0/
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Weighted_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Tree_%28graph_theory%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
7

9

Kruskal's Algorithm

MST-KRUSKAL(G, w)

1. A ← Ø

2. for each vertex v V[G]

3. do MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

 5. for each edge (u, v) E, taken in nondecreasing order by

 weight

6. do if FIND-SET(u) ≠ FIND-SET(v)

7. then A ← A {(u, v)}

8. UNION(u, v)

9. return A

Example

Step1. Edges are sorted in ascending

order by weight.

Edge No.

Vertex Pair

Edge

Weight

E1

(0,2)

1

E2

(3,5)

2

E3

(0,1)

3

E4

(1,4)

3

E5

(2,5)

4

E6

(1,2)

5

E7 (2,3) 5

E8 (0,3) 6

E9 (2,4) 6

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

0

E10 (4,5) 6

Step2. Edges are added in sequence.

Graph

Add Edge E1

Add Edge E2

Add Edge E3

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

1

Add Edge E4

Add Edge E5

 Total Cost = 1+2+3+3+4 = 13

 Running Time = O(m log n) (m = edges, n = nodes)

Testing if an edge creates a cycle can be slow unless a complicated data structure called a

“union-find” structure is used. It usually only has to check a small fraction of the edges,

but in some cases (like if there was a vertex connected to the graph by only one edge and it

was the longest edge) it would have to check all the edges. This algorithm works best, of

course, if the number of edges is kept to a minimum.

 Advantages are:

1) Easy to understand

2) Give good result for large number of vertices and edges.

Disadvantages are:

1) Difficulty of checking whether arcs form cycles makes it slow and hard to program

2) Same weight may increase the complexity.

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

2

Prim's

Algorithm

Prim's

algorithm is a

greedy algorithm that finds a minimum spanning tree for a connected weighted

undirected graph. It finds a subset of the edges that forms a tree that includes every

vertex, where the total weight of all the edges in the tree is minimized. This algorithm is

directly based on the MST(minimum spanning tree) property.

 Prim's Algorithm

MST-PRIM(G, w, r)

1. for each u V [G]

2. do key[u] ← ∞

3. π[u] ← NIL

4. key[r] ← 0

5. Q ← V [G]

6. while Q ≠ Ø

7. do u ← EXTRACT-MIN(Q)

8. for each v Adj[u]

9. do if v Q and w(u, v) < key[v]

10. then π[v] ← u

11. key[v] ← w(u, v)

Procedure for finding Minimum Spanning Tree

Step1

 No. of Nodes 0 1 2 3 4 5

 Distance 0 3 1 6 ∞ ∞

 Distance From 0 0 0

Step2

 No. of Nodes 0 1 2 3 4 5

 Distance 0 3 0 5 6 4

 Distance From 0 2 2 2

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

3

Step3

No. of Nodes 0 1 2 3 4 5

Distance 0 0 0 5 3 4

Distance From 2 1

2

Step4

No. of Nodes 0 1 2 3 4 5

Distance 0 0 0 5 0 4

Distance From 2

 2

 Step5

No. of Nodes 0 1 2 3 4 5

Distance 0 0 0 3 0 0

Distance From 2 2

Minimum Cost = 1+2+3+3+4 = 13

Running Time = O(m + n log n) (m = edges, n = nodes)

If a heap is not used, the run time will be O(n^2) instead of

O(m + n log n). However, using a heap complicates the code since you’re complicating

the data structure. A Fibonacci heap is the best kind of heap to use, but again, it

complicates the code.

Unlike Kruskal’s, it doesn’t need to see the entire graph at once. It can deal with it one

piece at a time. It also doesn’t need to worry if adding an edge will create a cycle since

this algorithm deals primarily with the nodes, and not the edges.

For this algorithm the number of nodes needs to be kept to a minimum in addition to the

number of edges. For small graphs, the edges matter more, while for large graphs the

number of nodes matters more.

Advantages are:

1) Easy to understand.

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

4

2) Root node is selected so clear about the starting node.

Disadvantages are:

1) Time taken to check for smallest weight arc makes it slow for large numbers of nodes.

2) Difficult to program, though it can be programmed in matrix form

3) Same weight may increase the complexity when one of the weights is eliminated in a

cycle

III. LITERATURE SURVEY

In this section, lot of research works has been recorded from past few years. They are

presented here:

Modified prim’s algorithm:

In this algorithm, Instead of choosing randomly, root node is chosen with minimum edge

weight. Remaining procedure is same as used by prims. Due to this only minimum weight

edges are included. Although complexity remains same as prim’s algorithm.

Advantages are:

It gives slightly better performance in case where minimum weight edge is required from

the starting phase of minimum spanning tree formation.

Disadvantages are:

Complexity is remaining same.

Visit, Mark and Construct MST algorithm:

In this algorithm, adjacency matrix is used which help to reduce the step at the time of

constructing MST. This method is based on the Kruskal algorithm with modification which

used improve the complexity of the MST algorithm for the undirected graph. This method is

purely for the undirected graph. So the weight of the 1 to 2 vertices is same for the 2 to 1

vertices. See the below Fig.1. In which edges 1 to 2 contain 52 weights and the weight for the

edges 2 to 1 is also 52.So, it is same for undirected graph.

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

5

Fig.1 n*n weighted matrix

Now for the vertices 1 to 1, 2 to 2....n to n. there is no weight and if there is a weight then

it automatically removed because of generating a cycle. So, it places 0 as infinite. Now if we

have n vertices then we have n*n adjacency matrix. So, need to perform n^2 steps, because it

will check all the elements from the graph. So, author first removes unused row column from

the adjacency matrix. Here first row and last column are never used during the

implementation because edges 1 to 2 has the same 2 to 1 and edges 1 to 1 is always 0 or

automatically eliminated because of generating cycle. So, adjacency matrix has (n-1) rows

and (n-1) columns. See the below adjacency Fig.2 and Fig.3.

Fig.2 Reducing the n*n order matrix to order m*m where m = (n-1)

Fig.3 m*m operational weight Matrix

So, n^2− 2n +1 steps will be performed. So, complexity is O (m^2) where m is (n-1) [7].

This algorithm works in the following two passes. 1) Mark Phase: In which algorithm marks

the candidate edge from the graph for the minimum spanning tree. 2) MST Construction

Phase: In the second phase, the algorithm constructs the desired minimum spanning tree T

including only the marked edges from the upper triangular weight matrix M, which were

marked during Marking Pass.

In this algorithm, minimum weight are marked and visited first. Once weight is visited

and it doesn’t create a cycle then it will be added to the list of minimum spanning tree edges.

Otherwise it will be removed and next minimum weight should be taken for the further

https://creativecommons.org/licenses/by/4.0/

© The Author(s) 2015. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

P
ag

e1
8

6

procedure. This will happen till n-1 edges get for the minimum spanning tree edges. Once the

n-1 edges are get than it will stop algorithm and calculate total cost.

Advantages are:

Complexity is O(n) for the best case.

Disadvantages are:

Complexity is O(n^2) for the best case.

IV. CONCLUSION

This paper presents classical algorithms and advance MST algorithm and it is observed that

complexity is very high because of cycle in the graph and the edges with the same weight. It

also observed that complexity can be improved using following steps. 1) Marked and visit the

maximum weight of the edges. 2) If it creates a cycle then eliminate those edges from the

current graph. 3) Above two steps will be repeated till edges = vertices-1. Prim’s algorithms

span from one node to another while Kruskal’s algorithm select the edges in a way that the

position of the edge is not based on the last step. In prim’s algorithm, graph must be a

connected graph while the Kruskal’s can function on disconnected graphs too. Prim’s

algorithm has a time complexity of O(V2), and Kruskal’s time complexity is O(logV).

References

1. Pettie, S., Ramachandran, V.: A shortest path algorithm for real weighted undirected

graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

2. Thorup, M.: Undirected single-source shortest paths with positive integer weights in

linear time. J. ACM 46(3), 362–394 (1999)

3. Graham, R.L., Hell, P.: On the history of the minimumspanning tree problem. Ann.

Hist. Comput. 7(1), 43–57 (1985)

4. Ion, A., Kropatsch, W.G., Haxhimusa, Y.: Considerations regarding the minimum

spanning tree pyramid segmentation method. In: Proc. 11th Workshop Structural,

Syntactic, and Statistical Pattern Recognition (SSPR). LNCS, vol. 4109, pp. 182–

190. Springer, Berlin (2006)

5. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on

Euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1998)

6. http://scanftree.com/Data_Structure/prim's-algorithm

7. http://delab.csd.auth.gr/~manolopo/graph/Lec9_MST.ppt

https://creativecommons.org/licenses/by/4.0/

