Indian Journal of

Engineering

Almost slightly semi-continuity, slightly semi-open and slightly semi-closed mappings

Balasubramanian S[©]

Department of Mathematics, Govt. Arts College(A), Karur - 639 005, Tamil Nadu

© Corresponding Author: Department of Mathematics, Govt. Arts College(A), Karur – 639 005, Tamil Nadu, India, E-Mail: mani55682@rediffmail.com

Received 21 August; accepted 27 September; published online 15 October; printed 28 October 2013

ABSTRACT

In this paper we discuss new type of continuous functions called almost slightly semi-continuous, slightly semi-open and slightly semi-closed functions; its properties and interrelation with other such functions are studied.

Keywords: slightly continuous functions; slightly semi-continuous functions; slightly pre-continuous; slightly β -continuous functions and slightly v-continuous functions

AMS-classification Numbers: 54C10; 54C08; 54C05

To Cite This Article

Balasubramanian S. Almost slightly semi-continuity, slightly semi-open and slightly semi-closed mappings. *Indian Journal of Engineering*, 2013, 5(13), 44-52

1. INTRODUCTION

In 1995 T. M. Nour introduced slightly semi-continuous functions. After him T. Noiri and G. I. Chae further studied slightly semi-continuous functions in 2000. T. Noiri individually studied about slightly β -continuous functions in 2001. C. W. Baker introduced slightly precontinuous functions in 2002. Arse Nagli Uresin and others studied slightly δ -continuous functions in 2007. Recently S. Balasubramanian and P.A.S. Vyjayanthi studied slightly v-continuous functions in 2011. Inspired with these developments we introduce in this paper almost slightly semi-continuous, slightly semi-open and slightly semi-closed functions and study its basic properties and interrelation with other type of such functions. Throughout the paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned.

2. PRELIMINARIES

 $\textbf{Definition 2.1:} \ \, A \subset X \text{ is called } g\text{-closed[rg-closed]} \text{ if cl } A \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is open in } X.$

Definition 2.2: A function $f:X \to Y$ is said to be

- (i) continuous[resp: nearly-continuous; $r\alpha$ -continuous; α -continuous; semi-continuous; β -continuous; pre-continuous] if inverse image of each open set is open[resp: regular-open; α -open; α -open; semi-open; β -open; preopen].
- (ii) almost continuous[resp: almost nearly-continuous; almost α -continuous; almost α -continuous; almost semi-continuous; almost β -continuous; almost pre-continuous] if for each x in X and each open set (V, f(x)), \exists an open[resp: regular-open; r α -open; α -open; semi-open; β -open; preopen] set (U, x) such that $f(U) \subset (cl(V))^{\alpha}$.
- (iii) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly α -continuous; slightly α -continuous; slightly r-continuous; slightly α -continuous] at α if for each clopen subset α in α if α containing α if α if α if α if α if for each clopen subset α in α if α if

Lemma 2.1:

(i) Let A and B be subsets of a space X, if $A \in \tau(X)$ and $B \in RO(X)$, then $A \cap B \in \tau(B)$. (ii) Let $A \subset B \subset X$, if $A \in \tau(B)$ and $B \in RO(X)$, then $A \in \tau(X)$.

Note 1: RCO(Y, f(x)) means regular-clopen set in Y containing f(x) and $\tau(X, x)$ means open set in X containing x.

3. ALMOST SLIGHTLY SEMI-CONTINUOUS FUNCTIONS

Definition 3.1: A function $f:X \to Y$ is said to be almost slightly semi-continuous at x in X if for each $V \in RCO(Y, f(x))$, $\exists U \in SO(X, x)$ such that $f(U) \subseteq V$ and almost slightly semi-continuous if it is almost slightly semi-continuous at each x in X.

Note 2: Here after we call almost slightly semi-continuous function as al.sl.s.c function shortly.

Example 3.1: X = Y = {a, b, c}; τ = { ϕ , {a}, {b}, X} and σ = { ϕ , {a}, {b, c}, Y}. Let f be defined as f(a) = b; f(b) = c and f(c) = a, then f is al.sl.s.c.

Example 3.2: $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Let f be defined as f(a) = b; f(b) = c and f(c) = a, then f is not al.sl.s.c.

Theorem 3.1: The following are equivalent:

- (i) f is al.sl.s.c.
- (iii) $f^{-1}(V)$ is semi-open for every r-clopen set V in Y.
- (iii) $f^{-1}(V)$ is semi-closed for every r-clopen set V in Y.
- (iv) $f(scl(A)) \subseteq scl(f(A))$.

Corollary 3.1: The following are equivalent.

- (i) *f* is al.sl.s.c.
- (ii) For each x in X and each $V \in RCO(Y, f(x)) \exists U \in SO(X, x)$ such that $f(U) \subseteq V$.

Theorem 3.2: Let $\Sigma = \{U_i : i \in I\}$ be any cover of X by regular open sets in X. A function f is al.sl.s.c. iff $f_{i \cup i}$ is al.sl.s.c., for each $i \in I$.

Proof: Let $i \in I$ be an arbitrarily fixed index and $U_i \in RO(X)$. Let $x \in U_i$ and $V \in RCO(Y, f_{U_i}(x))$ Since f is al.sl.s.c, $\exists \ U \in SO(X, x)$ such that $f(U) \subset V$. Since $U_i \in RO(X)$, by Lemma 2.1 $x \in U \cap U_i \in SO(U_i)$ and $(f_{U_i})U \cap U_i = f(U \cap U_i) \subset f(U) \subset V$. Hence f_{U_i} is al.sl.s.c. Conversely Let x in X and $V \in RCO(Y, f(x))$, $\exists \ i \in I$ such that $x \in U_i$. Since f_{U_i} is al.sl.s.c, $\exists \ U \in SO(U_i, x)$ such that $f_{U_i}(U) \subset V$. By Lemma 2.1, $U \in SO(X)$ and $f(U) \subset V$. Hence f is al.sl.s.c.

Theorem 3.3: If f is almost continuous and g is continuous[al.sl.s.c.,], then g ilda f is al.sl.s.c.

Theorem 3.4: If f is almost continuous, open and g be any function, then $g ilde{f}$ is al.sl.s.c iff g is al.sl.s.c.

Proof: If part: Theorem 3.3

Only if part: Let $A \in RCO(Z)$. Then $(g^* f)^{-1}(A) \in \tau(X)$. Since f is open, $f(g^* f)^{-1}(A) = g^{-1}(A)$ is open in Y. Thus g is al.sl.s.c.

Corollary 3.2: If f is r-irresolute, open and bijective, g is a function. Then g is al.sl.s.c. iff g• f is al.sl.s.c.

Theorem 3.5: If $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for all x in X be the graph function of $f: X \to Y$. Then g is al.sl.s.c iff f is al.sl.s.c.

Proof: Let $V \in RCO(Y)$, then $X \times V \in RCO(X \times Y)$. Since g is al.sl.s.c., $f^{-1}(V) = f^{-1}(X \times V) \in SO(X)$. Thus f is al.sl.s.c.

Conversely, let x in X and $F \in RCO(X \times Y, g(x))$. Then $F \cap (\{x\} \times Y) \in RCO(\{x\} \times Y, g(x))$. Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y: (x, y) \in F\} \in RCO(Y)$. Since f is al.sl.s.c. $\cup \{f^{-1}(y): (x, y) \in F\}$ is open in X. Further $x \in \cup \{f^{-1}(y): (x, y) \in F\} \subseteq g^{-1}(F)$. Hence $g^{-1}(F)$ is open. Thus g is al.sl.s.c.

Theorem 3.6: (i) $f: \Pi X_{\lambda} \to \Pi Y_{\lambda}$ is al.sl.s.c, iff f_{λ} : $X_{\lambda} \to Y_{\lambda}$ is al.sl.s.c for each $\lambda \in \Gamma$. (ii) If $f: X \to \Pi Y_{\lambda}$ is al.sl.s.c, then $P_{\lambda} \cdot f: X \to Y_{\lambda}$ is al.sl.s.c for each $\lambda \in \Gamma$, where $P_{\lambda} : \Pi Y_{\lambda}$ onto Y_{λ} .

Remark 1: Composition, Algebraic sum, product and the pointwise limit of al.sl.s.c functions is not in general al.sl.s.c. However we can prove the following:

Theorem 3.7: The uniform limit of a sequence of al.sl.s.c functions is al.sl.s.c.

Note 3: Pasting Lemma is not true for al.sl.s.c functions. However we have the following weaker versions.

Theorem 3.8: Let X and Y be topological spaces such that $X = A \cup B$ and let f_{iA} and g_{iB} are al.sl.r.c maps such that f(x) = g(x) for all $x \in A \cap B$. If A, $B \in RO(X)$ and RO(X) is closed under finite unions, then the combination $\alpha: X \to Y$ is al.sl.s.c continuous.

Theorem 3.9: Pasting Lemma Let X and Y be spaces such that $X = A \cup B$ and let f_A and g_B are al.sl.s.c maps such that f(x) = g(x) for all $x \in A \cap B$. A, $B \in RO(X)$ and SO(X) is closed under finite unions, then the combination $\alpha: X \to Y$ is al.sl.s.c. **Proof:** Let $F \in RCO(Y)$, then $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$, where $f^{-1}(F) \in SO(A)$ and $g^{-1}(F) \in SO(B) \Rightarrow f^{-1}(F)$; $g^{-1}(F) \in SO(X) \Rightarrow f^{-1}(F) \cup g^{-1}(F) = \alpha^{-1}(F) \in SO(X)$. Hence $\alpha: X \to Y$ is al.sl.s.c.

Definition 3.2: A function f is said to be almost somewhat semi-continuous if for $U \in RO(\sigma)$ and $f^{-1}(U) \neq \varphi$, there exists a non-empty semi-open set V in X such that $V \subset f^{-1}(U)$.

It is clear that every continuous function is almost somewhat continuous and almost somewhat continuous function is almost somewhat semi-continuous. But the converse is not true.

Example 3.3: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. The function $f(X, \tau) \to (X, \sigma)$ defined by f(a) = b, f(b) = c and f(c) = a is almost somewhat semi-continuous.

Example 3.4: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function $f(X, \tau) \to (X, \sigma)$ defined by f(a) = b, f(b) = c and f(c) = a is not almost somewhat semi-continuous.

Note 4: Every almost somewhat semi-continuous function is almost slightly semi-continuous.

Theorem 3.10: If f is almost somewhat semi-continuous and g is continuous, then g•f is almost somewhat semi-continuous.

Corollary 3.3: If f is almost somewhat semi-continuous and g is r-continuous[r-irresolute], then $g extbf{-} f$ is almost somewhat semi-continuous.

Theorem 3.11: For a surjective function f, the following statements are equivalent:

- (i) f is almost somewhat semi-continuous.
- (ii) If C is a r-closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper semi-closed subset D of X such that $f^{-1}(C) \subset D$. (iii) If M is a dense subset of X, then f(M) is a dense subset of Y.
- **Proof:** (i) \Rightarrow (ii): For C, r-closed in Y such that $f^{-1}(C) \neq X$, Y-C is r-open in Y such that $f^{-1}(Y-C) = X f^{-1}(C) \neq \phi$ By (i), there exists a semi-open set V such that $V \neq \phi$ and $V \subset f^{-1}(Y-C) = X f^{-1}(C)$. Thus $X-V \supset f^{-1}(C)$ and X V = D is a proper semi-closed set in X.
- (ii) \Rightarrow (i): Let $U \in RO(\sigma)$ and $f^{-1}(U) \neq \varphi$ Then Y-U is r-closed and $f^{-1}(Y-U) = X-f^{-1}(U) \neq X$. By (ii), there exists a proper semi-closed set D such that $D \supset f^{-1}(Y-U)$. This implies that $X-D \subset f^{-1}(U)$ and X-D is semi-open and $X-D \neq \varphi$.
- (ii) \Rightarrow (iii): Let M be dense set in X. If f(M) is not dense in Y. Then there exists a proper r-closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper semi-closed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is dense in X.
- (iii) \Rightarrow (ii): Suppose (ii) is not true, there exists a r-closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper semi-closed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is dense in X. But by (iii), $f(f^{-1}(C)) = C$ must be dense in Y, which is a contradiction to the choice of C.

Theorem 3.12: Let f be a function and $X = A \cup B$, where $A,B \in RO(X)$. If f_{IA} and f_{IB} are almost somewhat semi-continuous, then f is almost somewhat semi-continuous.

Proof: Let $U \in RO(\sigma)$ such that $f^{-1}(U) \neq \phi$. Then $(f_{|A})^{-1}(U) \neq \phi$ or $(f_{|B})^{-1}(U) \neq \phi$ or both $(f_{|A})^{-1}(U) \neq \phi$ and $(f_{|B})^{-1}(U) \neq \phi$. Suppose $(f_{|A})^{-1}(U) \neq \phi$, Since $f_{|A}$ is almost somewhat semi-continuous, there exists a semi-open set V in A such that $V \neq \phi$ and $V \subset (f_{|A})^{-1}(U) \subset f^{-1}(U)$. Since $V \in SO(A)$ and $A \in RO(X)$, $V \in SO(X)$. Thus f is almost somewhat semi-continuous. The proof of other cases are similar.

Definition 3.3: If X is a set and τ and σ are topologies on X, then τ is said to be semi-equivalent to σ provided if U ∈ SO(τ) and U ≠ ϕ , there is an semi-open set V in X such that V ≠ ϕ and V \subset U and if U ∈ SO(σ) and U ≠ ϕ , there is an semi-open set V in (X, τ) such that V ≠ ϕ and U \supset V.

Definition 3.4: A \subset X is said to be dense in X if there is no proper closed set C in X such that M \subset C \subset X.

Now, consider the identity function f and assume that τ and σ are equivalent. Then f and f^{-1} are almost somewhat continuous. Conversely, if the identity function f is almost somewhat continuous in both directions, then τ and σ are equivalent.

Theorem 3.13: Let $f:(X, \tau) \to (Y, \sigma)$ be a almost somewhat semi-continuous surjection and τ^* be a topology for X, which is semi-equivalent to τ . Then $f:(X, \tau^*) \to (Y, \sigma)$ is almost somewhat semi-continuous.

Proof: Let $V \in RO(\sigma) \ni f^{-1}(V) \neq \phi$. Since f is almost somewhat semi-continuous, \exists a nonempty $U \in SO(X, \tau) \ni U \subset f^{-1}(V)$. For τ^* is semi-equivalent to τ , \exists $U^* \in SO(X; \tau^*) \ni U^* \subset U$. But $U \subset f^{-1}(V)$. Then $U^* \subset f^{-1}(V)$; hence $f: (X, \tau^*) \to (Y, \sigma)$ is almost somewhat semi-continuous.

Theorem 3.14: Let $f:(X, \tau) \to (Y, \sigma)$ be a almost somewhat semi-continuous surjection and σ^* be a topology for Y, which is semi-equivalent to σ . Then $f:(X, \tau) \to (Y, \sigma^*)$ is almost somewhat semi-continuous.

Proof: Let $V^* \in RO(\sigma^*) \ni f^{-1}(V^*) \neq \phi$. Since σ^* is semi-equivalent to σ , $\exists \ V \neq \phi \in SO(Y, \sigma) \ni V \subset V^*$. Now $\phi \neq f^{-1}(V) \subset f^{-1}(V^*)$. Since f is almost somewhat semi-continuous, $\exists \ U \neq \phi \in SO(X, \tau) \ni U \subset f^{-1}(V)$. Then $U \subset f^{-1}(V^*)$; hence $f(X, \tau) \to (Y, \sigma^*)$ is almost somewhat semi-continuous.

4. SLIGHTLY SEMI-OPEN MAPPINGS, ALMOST SLIGHTLY SEMI-OPEN MAPPINGS AND ALMOST SOMEWHAT OPEN FUNCTION

Definition 4.1: A function $f: X \rightarrow Y$ is said to be

- (i) slightly semi-open if image of every clopen set in X is semi-open in Y
- (ii) almost slightly semi-open if image of every regular-clopen set in \boldsymbol{X} is semi-open in \boldsymbol{Y}

Note 5:

slightly-open map \rightarrow slightly semi-open.

almost slightly-open map→ almost slightly semi-open.

Example 4.1: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{a, b\}, X\}$; $\sigma = \{\phi, \{a, c\}, Y\}$. Let $f: X \rightarrow Y$ be defined f(a) = c, f(b) = b and f(c) = a. Then f is slightly open, slightly semi-open, slightly r-open, almost slightly open, almost slightly semi-open and almost slightly r-open.

Example 4.2: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{b, c\}, X\}$; $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f: X \rightarrow Y$ be defined f(a) = c, f(b) = a and f(c) = b. Then f is not slightly open, slightly semi-open, slightly r-open, almost slightly open, almost slightly semi-open and almost slightly r-open.

Note 6:

- (i) If $R\alpha O(Y) = SO(Y)$, then f is [almost-]slightly r α -open iff f is [almost-]slightly semi-open.
- (ii) If SO(Y) = RO(Y), then f is [almost-]slightly-r-open iff f is [almost-]slightly semi-open.
- (iii) If $SO(Y) = \alpha O(Y)$, then f is [almost-]slightly α -open iff f is [almost-]slightly semi-open.

Theorem 4.1: (i) If f is [almost-]slightly open and g is semi-open[r-open] then g-f is slightly semi-open (ii) If f is [almost-]slightly semi-open and g is M-semi-open[M-r-open] then g-f is slightly semi-open

Proof: Let A be clopen[regular clopen] set in $X \Rightarrow f(A)$ is open in $Y \Rightarrow g(f(A)) = g^*f(A)$ is semi-open in Z. Hence g^*f is [almost-lslightly semi-open.

Theorem 4.2: If f and g are r-open then g ilda f is [almost-]slightly semi-open

Proof: Let A be clopen[r-clopen] set in $X \Rightarrow f(A)$ is r-open and so open in $Y \Rightarrow g(f(A))$ is r-open in $Z \Rightarrow g(f(A)) = g \cdot f(A)$ is open in Z. Hence $g \cdot f$ is [almost-]slightly semi-open.

Theorem 4.3: If f is almost slightly-r-open and g is [almost-]semi-open then $g ilde{f}$ is [almost-]slightly semi-open

Corollary 4.1:

- (i) If f is almost slightly-open and g is open[r-open] then $g ilde{f}$ is [almost-]slightly semi-open.
- (ii) If f is almost slightly-r-open and g is [almost-]semi-open then g f is [almost-]slightly semi-open.
- (iii) If f and g are almost slightly-r-open then g•f is [almost-]slightly semi-open.

Theorem 4.4: If f is [almost-]slightly semi-open, then $f(A^\circ) \subset s(f(A))^\circ$

Proof: Let $A \subset X$ and f is slightly semi-open gives $f(A^o)$ is semi-open in Y and $f(A^o) \subset f(A)$ which in turn gives $f(A^o)^o \subset s(f(A))^o - \cdots (1)$

Since $f(A^\circ)$ is semi-open in Y, $s(f(A^\circ))^\circ = f(A^\circ) - \cdots - s(2)$

From (1) and (2) we have $f(A^{\circ}) \subset s(f(A))^{\circ}$ for every subset A of X.

Remark 2: converse is not true in general.

Theorem 4.5: If *f* is slightly semi-open and $A \subset X$ is *r*-open, then f(A) is τ_s -open in Y.

Proof: Let A \subset X and f is slightly semi-open implies $f(A^o) \subset s(f(A))^o$ which in turn implies $s(f(A))^o \subset f(A)$, since $f(A) = f(A^o)$. But $f(A) \subset s(f(A))^o$. Combining we get $f(A) = s(f(A))^o$. Hence f(A) is τ_s -open in Y.

Corollary 4.2: (i) If f is [almost-]slightly r-open, then $f(A^{\circ}) \subset s(f(A))^{\circ}$

- (ii) If f is [almost-]slightly r-open, then f(A) is τ_s -open in Y if A is r-open set in X.
- (iii) If f is almost slightly semi-open and $A \subset X$ is r-open, then f(A) is τ_s -open in Y.

Theorem 4.6: If $s(A)^{\circ} = r(A^{\circ})$ for every $A \subset Y$, then the following are equivalent:

- (i) f is [almost-]slightly semi-open map
- (ii) $f(A^\circ) \subset s(f(A))^\circ$

Proof: (i) \Rightarrow (ii) follows from theorem 4.4

(ii) \Rightarrow (i) Let A be any r-open set in X, then $f(A) = s(f(A))^{\circ} \supset f(A^{\circ})$ by hypothesis. We have $f(A) \subset s(f(A))^{\circ}$. Combining we get $f(A) = s(A)^{\circ} = r(A^{\circ})$ [by given condition] which implies f(A) is r-open and hence open. Thus f is slightly semi-open.

Theorem 4.7: f is [almost-]slightly semi-open iff for each subset S of Y and each r-clopen set U containing $f^{-1}(S)$, there is a semi-open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Remark 3: composition of two [almost-]slightly semi-open maps is not [almost-]slightly semi-open in general

Theorem 4.8: Let X, Y, Z be topological spaces and every open set is *r*-clopen in Y, then the composition of two [almost-]slightly semi-open maps is [almost-]slightly semi-open.

Proof: Let A be r-clopen in X \Rightarrow f(A) is open and so r-clopen in Y[by assumption] \Rightarrow g(f(A)) = g•f(A) is open in Z. Hence g•f is almost slightly semi-open.

Theorem 4.9: If f is [almost-]slightly g-open; g is open[r-open] and Y is $T_{1/2}[r-T_{1/2}]$, then $g ext{-} f$ is [almost-]slightly semi-open. **Proof**:(i) Let A be regular clopen in $X \Rightarrow A$ be clopen in $X \Rightarrow f(A)$ is g-open and open in Y[since Y is $T_{1/2}] \Rightarrow g(f(A)) = g ext{-} f(A)$ is open in Z. Hence $g ext{-} f$ is [almost-]slightly semi-open.

Corollary 4.3: (i) If f is [almost-]slightly g-open; g is open[r-open] and Y is $T_{\mathcal{H}}[r-T_{\mathcal{H}}]$ then $g \cdot f$ is [almost-]slightly semi-open. (ii) If f is [almost-]slightly g-open; g is [almost-]semi-open[almost-r-open] and Y is $T_{\mathcal{H}}[r-T_{\mathcal{H}}]$ then $g \cdot f$ is [almost-]slightly semi-open.

Theorem 4.10: If f is [almost-]slightly rg-open; g is open[r-open] and Y is r-T $_{1/2}$, then g-f is [almost-]slightly semi-open. **Proof:** Let A be r-clopen in $X \Rightarrow A$ be clopen in $X \Rightarrow f(A)$ is rg-open and r-open in Y[since Y is r-T $_{1/2}$] $\Rightarrow g(f(A)) = g$ -f(A) is open in X. Hence g-f is almost slightly semi-open.

Theorem 4.11: If f is [almost-]slightly rg-open; g is [almost-]semi-open[[almost-]r-open] and Y is r-T_{1/2}, then g-f is [almost-]slightly semi-open.

Proof: Let A be r-clopen in X \Rightarrow A be clopen in X \Rightarrow f(A) is r-open in Y \Rightarrow f(A) is r-open in Y[since Y is r-T_x] \Rightarrow $g(f(A)) = g^*f(A)$ is open in Z. Hence g^*f is almost slightly semi-open.

Corollary 4.4: (i) If f is [almost-]slightly rg-open; g is open[r-open] and Y is r-T $_{\frac{1}{2}}$, then g-f is [almost-]slightly semi-open. (ii) If f is [almost-]slightly rg-open; g is [almost-]semi-open[[almost-]r-open] and Y is r-T $_{\frac{1}{2}}$, then g-f is [almost-]slightly semi-open.

Theorem 4.12: If f, g be two mappings such that g-f is [almost-]slightly semi-open[[almost-] slightly r-open]. Then the following are true

- (i) If f is continuous[r-continuous] and surjective, then g is [almost-]slightly semi-open
- (ii) If f is g-continuous, surjective and X is $T_{\frac{1}{2}}$, then g is [almost-]slightly semi-open
- (iii) If f is rg-continuous, surjective and X is $r-T_{1/2}$, then g is [almost-]slightly semi-open

Proof: Let A be regular clopen in $Y \Rightarrow A$ be clopen in $Y \Rightarrow f^{-1}(A)$ is open in $X \Rightarrow g^{\bullet}f(f^{-1}(A)) = g(A)$ is open in Z. Hence g is almost slightly semi-open.

Similarly we can prove the remaining parts and so omitted.

Corollary 4.5: If f, g be two mappings such that g-f is [almost-]slightly semi-open[[almost-]slightly r-open]. Then the following are true

- (i) If *f* is continuous[*r*-continuous] and surjective, then *g* is [almost-]slightly semi-open.
- (ii) If f is g-continuous, surjective and X is $T_{1/2}$, then g is [almost-]slightly semi-open.
- (iii) If f is rg-continuous, surjective and X is $r-T_{1/2}$, then g is [almost-]slightly semi-open.

Theorem 4.13: If X is regular, f is r-open, nearly-continuous, open surjection and $\bar{A} = A$ for every open[r-open] set in Y, then Y is regular.

Theorem 4.14: If f is [almost-]slightly semi-open and A is r-clopen[clopen] set of X, then f_A is [almost-]slightly semi-open. **Proof:** Let F be r-open set in A. Then F = A \cap E is r-open in X for some r-open set E of X which implies f(A) is open in Y. But $f(F) = f_A(F)$. Therefore f_A is [almost-]slightly semi-open.

Theorem 4.15: If f is [almost-]slightly semi-open, X is $T_{\frac{1}{2}}$ and A is g-open set of X, then f_A is [almost-]slightly semi-open.

Corollary 4.6: If f is [almost-]slightly open, X is $T_{\frac{1}{2}}$ and A is g-open set of X, then f_A is [almost-]slightly semi-open.

Theorem 4.16: If $f_i: X_i \to Y_i$ be [almost-]slightly semi-open for i = 1, 2. Let $f_i: X_1 \times X_2 \to Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f_i: X_1 \times X_2 \to Y_1 \times Y_2$ is [almost-]slightly semi-open.

Proof: Let $U_1 \times U_2 \subset X_1 \times X_2$ where U_i is r-clopen in X_i for i = 1, 2. Then $f(U_1 \times U_2) = f_1(U_1) \times f_2(U_2)$ a open set in $Y_1 \times Y_2$. Thus $f(U_1 \times U_2)$ is open and hence f is [almost-]slightly semi-open.

Corollary 4.7: If $f_i: X_i \rightarrow Y_i$ be [almost-]slightly open for i = 1, 2. Let $f_i: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f_i: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is [almost-]slightly semi-open.

Theorem 4.17: Let $h: X \to X_1 \times X_2$ be [almost-]slightly semi-open. Let $f_i: X \to X_i$ be defined as $h(x) = (x_1, x_2)$ and $f_i(x) = x_i$. Then $f_i: X \to X_i$ is [almost-]slightly semi-open for i = 1, 2.

Proof: Let U_1 be r-clopen in X_1 , then $U_1x X_2$ is r-clopen in $X_1x X_2$, and $h(U_1x X_2)$ is open in X. But $f_1(U_1) = h(U_1x X_2)$, therefore f_1 is [almost-]slightly semi-open. Similarly we can show that f_2 is [almost-]slightly semi-open and thus $f_1: X \to X_1$ is [almost-]slightly semi-open for i = 1, 2.

Corollary 4.8: Let $h: X \to X_1 \times X_2$ be [almost-]slightly open. Let $f_i: X \to X_i$ be defined as $h(x) = (x_1, x_2)$ and $f_i(x) = x_i$. Then $f_i: X \to X_i$ is [almost-]slightly semi-open for i = 1, 2.

Definition 4.2: A function f is said to be almost somewhat semi-open provided that if $U \in RO(\tau)$ and $U \neq \phi$, then there exists a non-empty semi-open set V in Y such that $V \subset f(U)$.

Example 4.3: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. The function f: defined by f(a) = a, f(b) = c and f(c) = b is almost somewhat open and almost somewhat semi-open.

Example 4.4: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. The function f: defined by f(a) = c, f(b) = a and f(c) = b is not almost somewhat semi-open.

Theorem 4.18: Let f be an r-open function and g almost somewhat semi-open. Then g• f is almost somewhat semi-open.

Theorem 4.19: For a bijective function *f*, the following are equivalent: (i) *f* is almost somewhat semi-open.

(ii) If C is an r-closed subset of X, such that $f(C) \neq Y$, then there is a semi-closed subset D of Y such that $D \neq Y$ and $D \supset f(C)$. **Proof:** (i) \Rightarrow (ii): Let C be any r-closed subset of X such that $f(C) \neq Y$. Then X-C is r-open in X and X-C $\neq \varphi$. Since f is almost somewhat semi-open, there exists a semi-open set $V \neq \varphi$ in Y such that $V \subset f(X-C)$. Put D = Y-V. Clearly D is semi-closed in Y and we claim $D \neq Y$. If D = Y, then $V = \varphi$, which is a contradiction. Since $V \subset f(X-C)$, $V \subset f(X-C)$ is $V \subset f(X-C)$. (ii) $V \subset f(X-C)$ is r-closed in X and $V \subset f(X-C)$ implies $V \subset f(X-C)$ in Y. Therefore, by (ii), there is a semi-closed set D of Y such that $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ is a semi-open set and $V \subset f(X-C)$ in Y-f(C) $V \subset f(X-C)$ in Y-f(C

Theorem 4.20: The following statements are equivalent:

(i) f is almost somewhat semi-open.

(ii) If A is a dense subset of Y, then $f^{-1}(A)$ is a dense subset of X.

Proof: (i) \Rightarrow (ii): If A is dense set in Y. If $f^{-1}(A)$ is not dense in X, then there exists a r-closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since f is almost somewhat semi-open and X-B is open, there exists a nonempty semi-open set C in Y such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f(f^{-1}(Y-A)) \subset Y-A$. That is, $A \subset Y-C \subset Y$. Now, Y-C is a semi-closed set and $A \subset Y-C \subset Y$. This implies that A is not a dense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ is a dense set in X.

(ii) \Rightarrow (i): If $A \neq \phi$ is an r-open set in X. We want to show that $(f(A))^{\circ} \neq \phi$. Suppose $(f(A))^{\circ} = \phi$. Then, c(f(A)) = Y. By (ii), $f^{-1}(Y - f(A))$ is dense in X. But $f^{-1}(Y - f(A)) \subset X - A$. Now, X-A is r-closed. Therefore, $f^{-1}(Y - f(A)) \subset X - A$ gives $X = c(f^{-1}(Y - f(A))) \subset X - A$. This implies that $A = \phi$, which is contrary to $A \neq \phi$. Therefore, $(f(A))^{\circ} \neq \phi$. Hence f is almost somewhat semi-open.

Theorem 4.21: Let f be almost somewhat semi-open and A be any r-open subset of X. Then f_{A} :(A; τ_{A}) \rightarrow (Y, σ) is almost somewhat semi-open.

Proof: Let $U \in RO(\tau_{/A})$ such that $U \neq \phi$. Since $U \in RO(\tau_{/A})$; $A \in RO(X)$; $U \in RO(X)$ and f is almost somewhat semi-open, $\exists V \in SO(Y)$, such that $V \subset f(U)$. Thus $f_{/A}$ is almost somewhat semi-open.

Theorem 4.22: Let f be a function and $X = A \cup B$, where $A, B \in \tau(X)$. If the restriction functions $f_{|A}$ and $f_{|B}$ are almost somewhat semi-open, then f is almost somewhat semi-open.

Proof: Let U be any r-open subset of X such that $U \neq \phi$. Since X = A \cup B, either A \cap U $\neq \phi$ or B \cap U $\neq \phi$ or both A \cap U $\neq \phi$ and B \cap U $\neq \phi$. Since U is open in X, U is open in both A and B.

Case (i): If $A \cap U \neq \phi$, where $U \cap A \in RO(\tau_{/A})$. Since $f_{/A}$ is almost somewhat semi-open, $\exists \ V \in SO(Y)$ such that $V \subset f(U \cap A) \subset f(U)$, which implies that f is almost somewhat semi-open.

Case (ii): If $B \cap U \neq \emptyset$, where $U \cap B \in RO(\tau_B)$. Since f_B is almost somewhat semi-open, $\exists V \in SO(Y)$ such that $V \subset f(U \cap B) \subset f(U)$, which implies that f is almost somewhat semi-open.

Case (iii): If both $A \cap U \neq \varphi$ and $B \cap U \neq \varphi$. Then by cases (i) and (ii) f is almost somewhat semi-open.

Remark 4: Two topologies τ and σ for X are said to be semi-equivalent if and only if the identity function $f:(X, \tau) \to (Y, \sigma)$ is almost somewhat semi-open in both directions.

Theorem 4.23: Let $f: (X, \tau) \to (Y, \sigma)$ be a almost somewhat almost semi-open function. Let τ^* and σ^* be topologies for X and Y, respectively such that τ^* is semi-equivalent to τ and τ^* is semi-equivalent to τ . Then τ is almost somewhat semi-open.

5. SLIGHTLY SEMI-CLOSED MAPPINGS AND ALMOST SLIGHTLY SEMI-CLOSED MAPPINGS

Definition 5.1: A function $f: X \rightarrow Y$ is said to be

- (i) slightly semi-closed if image of every clopen set in X is semi-closed in Y
- (ii) almost slightly semi-closed if image of every regular-clopen set in X is semi-closed in Y

Note 7:

slightly-closed map → slightly semi-closed.

almost slightly-closed map→ almost slightly semi-closed.

Example 5.1: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{a, b\}, X\}$; $\sigma = \{\phi, \{a, c\}, Y\}$. Let $f: X \rightarrow Y$ be defined f(a) = c, f(b) = b and f(c) = a. Then f is slightly closed, slightly semi-closed, slightly f-closed, almost slightly closed, almost slightly semi-closed and almost slightly f-closed.

Example 5.2: Let $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{b, c\}, X\}$; $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f:X \to Y$ be defined f(a) = c, f(b) = a and f(c) = b. Then f is not slightly closed, slightly semi-closed, slightly r-closed, almost slightly closed, almost slightly r-closed and almost slightly r-closed.

Note 8

(i) If $R\alpha C(Y) = SC(Y)$, then f is [almost-]slightly $r\alpha$ -closed iff f is [almost-]slightly semi-closed.

(ii) If SC(Y) = RC(Y), then f is [almost-]slightly-r-closed iff f is [almost-]slightly semi-closed.

(iii) If $SC(Y) = \alpha C(Y)$, then f is [almost-]slightly α -closed iff f is [almost-]slightly semi-closed.

Theorem 5.1: (i) If f is [almost-]slightly closed and g is semi-closed[r-closed] then g-f is slightly semi-closed (ii) If f is [almost-]slightly semi-closed and g is M-semi-closed[M-r-closed] then g-f is slightly semi-closed

Proof: Let A be clopen[regular clopen] set in $X \Rightarrow f(A)$ is closed in $Y \Rightarrow g(f(A)) = g \cdot f(A)$ is semi-closed in Z. Hence $g \cdot f$ is [almost-]slightly semi-closed.

Theorem 5.2: If f and g are r-closed then g•f is [almost-]slightly semi-closed

Proof: Let A be clopen[r-clopen] set in $X \Rightarrow f(A)$ is r-closed and so closed in $Y \Rightarrow g(f(A))$ is r-closed in $Z \Rightarrow g(f(A)) = g \cdot f(A)$ is closed in Z. Hence $g \cdot f$ is [almost-]slightly semi-closed.

Theorem 5.3: If f is almost slightly-r-closed and g is [almost-]semi-closed then g-f is [almost-]slightly semi-closed

Corollary 5.1:

(i) If f is almost slightly-closed and g is closed[r-closed] then g•f is [almost-]slightly semi-closed.

(ii) If f and g are almost slightly-r-closed then g-f is [almost-]slightly semi-closed.

(iii) If f is almost slightly-r-closed and g is [almost-]semi-closed then g•f is [almost-]slightly semi-closed.

Theorem 5.4: If f is [almost-]slightly semi-closed, then $scl(f(A)) \subset f(cl(A))$

Since f(cl(A)) is semi-closed in Y, scl(f(cl(A))) = f(cl(A)) - - - - - (2)

From (1) and (2) we have $(scl(f(A))) \subset (f(cl(A)))$ for every subset A of X.

Remark 5: converse is not true in general.

Theorem 5.5: If f is slightly semi-closed and $A \subset X$ is r-closed, then f(A) is τ_s -closed in Y.

Proof: Let $A \subset X$ and f is slightly semi-closed implies $(scl(f(A))) \subset f(cl(A))$ which in turn implies $(scl(f(A))) \subset f(A)$, since f(A) = f(cl(A)). But $f(A) \subset (scl(f(A)))$. Combining we get f(A) = (scl(f(A))). Hence f(A) is τ_s -closed in Y.

Corollary 5.2: (i) If f is [almost-]slightly r-closed, then $scl((f(A))) \subset f(cl(A))$

- (ii) If f is [almost-]slightly r-closed, then f(A) is closed in Y if A is r-closed set in X.
- (iii) If f is almost slightly semi-closed and $A \subset X$ is r-closed, then f(A) is τ_s -closed in Y.

Theorem 5.6: If (scl(A)) = r(cl(A)) for every $A \subset Y$, then the following are equivalent: (i) f is [almost-]slightly semi-closed map

(ii) $scl(f(A)) \subset f(cl(A))$

Proof: (i) ⇒ (ii) follows from theorem 5.4

(ii) \Rightarrow (i) Let A be any r-closed set in X, then $f(A) = f(cl(A)) \supset (scl(f(A)))$ by hypothesis. We have $f(A) \subset (scl(f(A)))$. Combining we get f(A) = (scl(f(A))) = r(cl(f(A))) by given condition] which implies f(A) is r-closed and hence closed. Thus f is slightly semi-closed.

Theorem 5.7: f is [almost-]slightly semi-closed iff for each subset S of Y and each r-clopen set U containing $f^{-1}(S)$, there is a semi-closed set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Remark 6: composition of two [almost-]slightly semi-closed maps is not [almost-]slightly semi-closed in general

Theorem 5.8: Let X, Y, Z be topological spaces and every closed set is *r*-clopen in Y, then the composition of two [almost-]slightly semi-closed maps is [almost-]slightly semi-closed.

Proof: Let A be r-clopen in X \Rightarrow f(A) is closed and so r-clopen in Y[by assumption] \Rightarrow g(f(A)) = $g^*f(A)$ is closed in Z. Hence g^*f is almost slightly semi-closed.

Theorem 5.9: If f is [almost-]slightly g-closed; g is closed[r-closed] and Y is $T_{\mathcal{H}}[r-T_{\mathcal{H}}]$, then $g \cdot f$ is [almost-]slightly semi-closed. **Proof:**(i) Let A be r-clopen in X \Rightarrow A be clopen in X \Rightarrow f(A) is g-closed in Y \Rightarrow f(A) is closed in Y[since Y is $T_{\mathcal{H}}] \Rightarrow g(f(A)) = g \cdot f(A)$ is closed in Z. Hence $g \cdot f$ is [almost-]slightly semi-closed.

Corollary 5.3: (i) If f is [almost-]slightly g-closed; g is closed[r-closed] and Y is $T_{1/2}[r-T_{1/2}]$ then $g extbf{-} f$ is [almost-]slightly semi-closed.

(ii) If f is [almost-]slightly g-closed; g is [almost-]semi-closed[[almost-]r-closed] and Y is $T_{1/2}[r-T_{1/2}]$ then $g \cdot f$ is [almost-]slightly semi-closed.

Theorem 5.10: If f is [almost-]slightly rg-closed; g is closed[r-closed] and Y is r-T $_{1/2}$, then g-f is [almost-]slightly semi-closed. **Proof:** Let A be r-clopen in X \Rightarrow A be clopen in X \Rightarrow f(A) is rg-closed and so r-closed in Y[since Y is r-T $_{1/2}$] \Rightarrow g(f(A)) = g-f(A) is closed in Z. Hence g-f is almost slightly semi-closed.

Theorem 5.11: If f is [almost-]slightly rg-closed; g is [almost-]semi-closed[[almost-]r-closed] and Y is r-T_½, then g-f is [almost-]slightly semi-closed.

Proof: Let A be r-clopen in X \Rightarrow A be clopen in X \Rightarrow f(A) is rg-closed and so r-closed in Y[since Y is r-T_{1/2}] \Rightarrow g(f(A)) = g•f(A) is closed in Z. Hence g•f is almost slightly semi-closed.

Corollary 5.4: (i) If f is [almost-]slightly rg-closed; g is closed[r-closed] and Y is r-T $_{\frac{1}{2}}$, then g-f is [almost-]slightly semi-closed. (ii) If f is [almost-]slightly rg-closed; g is [almost-]semi-closed[[almost-]r-closed] and Y is r-T $_{\frac{1}{2}}$, then g-f is [almost-]slightly semi-closed.

Theorem 5.12: If f, g be two mappings such that $g \cdot f$ is [almost-]slightly semi-closed[[almost-] slightly r-closed]. Then the following are true

(i) If f is continuous[r-continuous] and surjective, then g is [almost-]slightly semi-closed

(ii) If f is g-continuous, surjective and X is $T_{\frac{1}{2}}$, then g is [almost-]slightly semi-closed

(iii) If f is rg-continuous, surjective and X is r- $T_{1/2}$, then g is [almost-]slightly semi-closed

Proof: Let A be regular clopen in Y \Rightarrow A be clopen in Y \Rightarrow $f^{-1}(A)$ is closed in X \Rightarrow $g^{\bullet}f(f^{-1}(A)) = g(A)$ is closed in Z. Hence g is almost slightly semi-closed.

Similarly we can prove the remaining parts and so omitted.

Corollary 5.5: If f, g be two mappings such that $g \cdot f$ is [almost-]slightly semi-closed[[almost-]slightly r-closed]. Then the following are true

(i) If *f* is continuous[*r*-continuous] and surjective, then *g* is [almost-]slightly semi-closed.

(ii) If f is g-continuous, surjective and X is $T_{\frac{1}{2}}$, then g is [almost-]slightly semi-closed.

(iii) If f is rg-continuous, surjective and X is r- $T_{1/2}$, then g is [almost-]slightly semi-closed.

Theorem 5.13: If X is regular, f is r-closed, nearly-continuous, closed surjection and $\bar{A} = A$ for every closed[r-closed] set in Y, then Y is regular.

Theorem 5.14: If f is [almost-]slightly semi-closed and A is r-clopen[clopen] set of X, then f_A is [almost-]slightly semi-closed. **Proof:** For F, r-closed in A, Then F = A \cap E is r-closed in X for some r-closed set E of X which implies f(A) is closed in Y. But $f(F) = f_A(F)$. Therefore f_A is [almost-]slightly semi-closed.

Theorem 5.15: If f is [almost-]slightly semi-closed, X is $T_{\frac{1}{2}}$ and A is g-closed set of X, then f_A is [almost-]slightly semi-closed.

Corollary 5.6: If f is [almost-]slightly-closed, X is T_{1/2} and A is g-closed set of X, then f_A is [almost-]slightly semi-closed.

Theorem 5.16: If f_i : $X_i \rightarrow Y_i$ be [almost-]slightly semi-closed for i = 1, 2. Let $f:X_1 \times X_2 \rightarrow Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f:X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is [almost-]slightly semi-closed.

Proof: Let $U_1 \times U_2 \subset X_1 \times X_2$ where $U_i \in RCO(X_i)$ for i = 1, 2. Then $f(U_1 \times U_2) = f_1(U_1) \times f_2(U_2)$ a closed set in $Y_1 \times Y_2$. Thus $f(U_1 \times U_2)$ is closed and hence f is [almost-]slightly semi-closed.

Corollary 5.7: If $f_i: X_i \rightarrow Y_i$ be [almost-]slightly semi-closed for i = 1, 2. Let $f_i: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ be defined as $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f_i: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is [almost-]slightly semi-closed.

Theorem 5.17: Let $h: X \to X_1 \times X_2$ be [almost-]slightly semi-closed. Let $f: X \to X_i$ be defined as $h(x) = (x_1, x_2)$ and $f_i(x) = x_i$. Then $f: X \to X_i$ is [almost-]slightly semi-closed for i = 1, 2.

Proof: Let U_1 be r-clopen in X_1 , then U_1xX_2 is r-clopen in X_1xX_2 , and $h(U_1xX_2)$ is closed in X. But $f_1(U_1) = h(U_1xX_2)$, therefore f_1 is [almost-]slightly semi-closed. Similarly we can show that f_2 is [almost-]slightly semi-closed and thus f_i : $X \rightarrow X_i$ is [almost-]slightly semi-closed for i = 1, 2.

Corollary 5.8: Let $h: X \to X_1 \times X_2$ be [almost-]slightly semi-closed. Let $f: X \to X_i$ be defined as $h(x) = (x_1, x_2)$ and $f_i(x) = x_i$. Then $f: X \to X_i$ is [almost-]slightly semi-closed for i = 1, 2.

6. COVERING AND SEPARATION PROPERTIES OF al.sl.s.c. AND al.swt.s.c. FUNCTIONS

Theorem 6.1: If *f* is al.sl.s.c.[al.sl.r.c] surjection and X is semi-compact, then Y is compact.

Proof: Let $\{G_i: i \in I\}$ be any r-clopen cover for Y. Then each G_i is r-clopen in Y and f is al.sl.s.c., $f^{-1}(G_i)$ is semi-open in X. Thus $\{f^{-1}(G_i)\}$ forms a semi-open cover for X with a finite subcover, since X is semi-compact. Since f is surjection, $Y = f(X) = \bigcup_{i=1}^n G_i$. Therefore Y is compact.

Theorem 6.2: If f is al.sl.s.c., surjection and X is semi-compact[semi-Lindeloff] then Y is mildly compact[mildly lindeloff]. **Proof:** Let $\{U_i:i\in I\}$ be r-clopen cover for Y. For each x in X, $\exists \ \alpha_x \in I$ such that $f(x) \in U_{\alpha x}$ and $\exists \ V_x \in SO(X, x) \ni f(V_x) \subset U_{\alpha x}$. Since $\{V_i:i\in I\}$ is a semi-open cover of X, \exists a finite subset I_0 of I such that $X \subset \{V_x:x \in I_0\}$. Thus $Y \subset \bigcup \{f(V_x):x \in I_0\} \subset \bigcup \{U_{\alpha x}:x \in I_0\}$. Hence Y is mildly compact.

Corollary 6.1: (i) If *f* is al.sl.r.c. surjection and X is semi-compact, then Y is compact.

(ii) If f is al.sl.s.c.[resp: al.sl.r.c] surjection and X is locally semi-compact{resp: semi-Lindeloff; locally semi-Lindeloff}, then Y is locally compact{resp: Lindeloff; locally lindeloff; locally mildly compact; locally mildly lindeloff}.

(iii)If f is al.sl.s.c., [resp: al.sl.r.c] surjection and X is semi-compact[semi-lindeloff] then Y is mildly compact[mildly lindeloff].

Theorem 6.3: If f is al.sl.s.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff].

Proof: Let $\{V_i: V_i \in RCO(Y); i \in I\}$ be a cover of Y, then $\{f^{-1}(V_i): i \in I\}$ is semi-open cover of X and so there is finite subset I_0 of I, such that $\{f^{-1}(V_i): i \in I_0\}$ covers X. Therefore $\{V_i: i \in I_0\}$ covers Y since f is surjection. Hence Y is mildly compact.

Theorem 6.4: If f is al.sl.s.c., [resp: al.sl.r.c.] surjection and X is semi-connected, then Y is connected. **Proof:** If Y is disconnected, then $Y = A \cup B$ where A and B are disjoint r-clopen sets in Y. Since f is al.sl.s.c. surjection, $X = f^{-1}(Y) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A) \cap f^{-1}(B)$ are disjoint semi-open sets in X, which is a contradiction for X is semi-connected.

Corollary 6.2: (i) If *f* is al.sl.c[resp: al.sl.r.c.] surjection and X is s-closed then Y is mildly compact[mildly lindeloff]. (ii) The inverse image of a disconnected space under a al.sl.s.c., [resp: al.sl.r.c.] surjection is semi-disconnected.

Theorem 6.5: If f is al.sl.s.c.[resp: al.sl.r.c.], injection and Y is UrT_i, then X is sT_i i = 0, 1, 2.

Proof: Let $x_1 \neq x_2 \in X$. Then $f(x_1) \neq f(x_2) \in Y$ since f is injective. For Y is $UrT_2 \exists V_j \in RCO(Y)$ such that $f(x_j) \in V_j$ and $\bigcap V_j = \emptyset$ for j = 1,2. By Theorem 3.1, $x_j \in f^{-1}(V_j) \in SO(X)$ for j = 1,2 and $\bigcap f^{-1}(V_j) = \emptyset$ for j = 1,2. Thus X is ST_2 .

Theorem 6.6: If f is al.sl.s.c.[al.sl.r.c.] injection; r-closed and Y is UrT_i, then X is sT_i i = 3, 4.

Proof:(i) Let x in X and F be disjoint r-closed subset of X not containing x, then f(x) and f(F) be disjoint r-closed subset of Y not containing f(x), since f is r-closed and injection. Since Y is ultraregular, f(x) and f(F) are separated by disjoint r-clopen sets U and V respectively. Hence $x \in f^{-1}(U)$; $f^{-1}(V)$, $f^{-1}(V)$, $f^{-1}(V)$, $f^{-1}(V) \in SO(X)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Thus X is sT_3 .

(ii) Let F_j and $f(F_j)$ are disjoint r-closed sets in X and Y respectively for $f^{-1}(V) = f^{-1}(V) = f^$

Theorem 6.7: If f is al.sl.s.c.[resp: al.sl.r.c.], injection and (i) Y is UrC_i[resp: UrD_i] then X is sC_i[resp: sD_i] i = 0, 1, 2. (ii) Y is UrR_i, then X is sR_i i = 0, 1.

 $^{-1}(V_i) = \phi$ for j = 1,2. Thus X is sT_4 .

Theorem 6.8: If f is al.sl.s.c.[al.sl.r.c] and Y is UrT₂, then the graph G(f) is semi-closed in X×Y.

Proof: Let $(x_1, x_2) \notin G(f)$ implies $y \neq f(x)$ implies \exists disjoint V; $W \in RCO(Y)$ such that $f(x) \in V$ and $y \in W$. Since f is al.sl.s.c., $\exists U \in SO(X)$ such that $x \in U$ and $f(U) \subset W$ and $(x, y) \in U \times V \subset X \times Y - G(f)$. Hence G(f) is semi-closed in $X \times Y$.

Theorem 6.9: If f is al.sl.s.c.[al.sl.r.c] and Y is UrT_2 , then $A = \{(x_1, x_2) | f(x_1) = f(x_2)\}$ is semi-closed in $X \times X$. **Proof:** If $(x_1, x_2) \in X \times X - A$, then $f(x_1) \neq f(x_2)$ implies \exists disjoint $V_j \in RCO(Y)$ such that $f(x_j) \in V_j$, and since f is al.sl.s.c., $f^{-1}(V_j) \in SO(X, x_j)$ for j = 1, 2. Thus $(x_1, x_2) \in f^{-1}(V_1) \times f^{-1}(V_2) \in SO(X \times X)$ and $f^{-1}(V_1) \times f^{-1}(V_2) \subset X \times X - A$. Hence A is semi-closed.

Theorem 6.10: If f is al.sl.r.c.[resp: al.sl.s.c.]; $g: X \to Y$ is al.sl.c[resp: al.sl.r.c]; and Y is UrT₂, then $E = \{x \text{ in } X : f(x) = g(x)\}$ is semi-closed in X.

We have the following consequences of theorems 6.1 to 6.10:

Theorem 6.11: If f is al.swt.s.c.[resp: al.swt.r.c] surjection and X is semi-compact, then Y is compact.

Theorem 6.12: If f is al.swt.s.c., surjection and X is semi-compact[semi-Lindeloff] then Y is mildly compact[mildly lindeloff].

Corollary 6.3: (i) If *f* is al.swt.r.c. surjection and X is semi-compact, then Y is compact.

(ii) If f is al.swt.s.c.[resp: al.swt.r.c] surjection and X is semi-compact[semi-Lindeloff] then Y is mildly compact[mildly lindeloff].

(iii) If f is al.swt.s.c.[resp: al.swt.r.c] surjection and X is locally semi-compact{resp: semi-Lindeloff; locally semi-Lindeloff}, then Y is locally compact{resp: Lindeloff; locally lindeloff; locally mildly compact; locally mildly lindeloff }.

Theorem 6.13: If *f* is al.swt.s.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff].

Theorem 6.14: If f is al.swt.s.c.,[al.swt.r.c.] surjection and X is semi-connected, then Y is connected.

Hence Y is connected.

Corollary 6.4: (i) If f is al.swt.c[resp: al.swt.r.c.] surjection and X is s-closed then Y is mildly compact[mildly lindeloff]. (ii) The inverse image of a disconnected space under an al.swt.s.c.,[resp: al.swt.r.c.;] surjection is semi-disconnected.

Theorem 6.15: (i) If f is al.swt.s.c.[al.swt.r.c.], injection and Y is UrT_i, then X is sT_i i = 0, 1, 2. (ii) If f is al.swt.s.c.[resp: al.swt.r.c.] injection; r-closed and Y is UrT_i, then X is sT_i i = 3, 4.

Theorem 6.16: If f is al.swt.s.c.[resp: al.swt.r.c.;], injection and (i) Y is UrC_i[resp: UrD_i] then X is sC_i[resp: sD_i] i = 0, 1, 2. (ii) Y is UrR_i, then X is sR_i i = 0, 1.

Theorem 6.17: If f is al.swt.s.c.[resp: al.swt.r.c] and Y is UrT₂, then (i) the graph G(f) of f is semi-closed in the product space $X \times Y$. (ii) $A = \{(x_1, x_2) | f(x_1) = f(x_2)\}$ is semi-closed in the product space $X \times X$.

Theorem 6.18: If f is al.swt.r.c.[resp: al.swt.s.c.]; $g: X \rightarrow Y$ is al.swt.c[resp: al.swt.r.c]; and Y is UrT₂, then E = {x in X : f(x) = g(x)} is semi-closed in X.

7. CONCLUSION

In this paper we introduced the concept of almost slightly semi-continuous functions, almost somewhat semi-continuous functions, somewhat semi-open mappings, slightly semi-open mappings, almost slightly semi-open mappings, slightly semi-closed mappings, almost slightly semi-closed mappings, studied their basic properties and the interrelationship between other such maps.

REFERENCES

- Abd El-Monsef ME, Eldeeb SN, Mahmoud RA. β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut. Chiv. A. 1983, 12(1), 77-90
- 2. Andreivic D. β-open sets, Math. Vestnick. 1986, 38, 24-32
- 3. Arse Nagli Uresin, Aynur kerkin, Noiri T. slightly δ-precontinuous funtions, Commen, Fac. Sci. Univ. Ark. Series 2007, 56(2), 1-9
- 4. Arya SP, Bhamini MP. Some weaker forms of semi-continuous functions, Ganita 1982, 33(1-2), 124-134
- 5. Baker CW. Slightly precontinuous funtions, Acta Math Hung, 2002, 94(1-6), 45-52
- 6. Balasubramanian S, Vyjayanthi PAS. Slightly v-continuous functions, JARPM., 2012, 4(1), 100–112
- 7. Di.Maio G, Noiri T. on s-closed spaces, Indian J. Pure and Appl. Math., (11)226
- 8. Di Maio G. A separation axiom weaker than R₀, Indian J. Pure and Appl. Math. 1983, 16, 373-375
- 9. Dunham W. T_{1/2} Spaces, *Kyungpook Math. J.* 1977, 17, 161-169
- 10. Gentry KR, Hoyle HB. Somewhat continuous functions. Czechslovak Math.J.,1971, 21(96), 5-12
- 11. Maheswari SN, Prasad R. on Ro spaces, Portugal Math., 1975, 34, 213-217
- 12. Maheswari SN, Prasad R. on s-normal spaces, Bull. Math. Soc. Sci.R.S. Roumania, 1978, 22(70), 27
- 13. Maheswari SN, Prasad R. some new separation axioms, Ann. Soc. Sci, Bruxelle, 1975, 89, 395
- 14. Mashhour AS, Abd El-Monsef ME, El-Deep SN. α-continuous and α-open mappings, Acta Math Hung. 1983, 41(3-4), 231-218
- Mashhour AS, Abd El-Monsef ME, El-Deep SN. on precontinuous and weak precontinuous functions, Proc.Math.Phy.Soc.Egypt, 1982, 3, 47-53
- 16. Noiri T, Chae Gl. A Note on slightly semi continuous functions. Bull.Cal.Math.Soc 2000, 92(2), 87-92
- 17. Noiri T. Slightly β-continuous functions, *Internat. J. Math. & Math. Sci.* 2001, 28(8), 469-478
- 18. Nour TM. Slightly semi continuous functions. *Bull.Cal.Math.Soc* 1995, 87, 187-190
- 19. Singhal & Singhal. Almost continuous mappings. *Yokohama J.Math.* 1983, 16, 63-73