# **Indian Journal of**

# Engineering

# Minimal rp-closed sets and Maximal rp-closed sets

## Balasubramanian S<sup>1</sup>, Krishnamurthy TK<sup>2\*</sup>

- 1. Assistant Professor, Dept. of Mathematics, Government Arts College(A), Karur 639 005, Tamilnadu, India
- 2. Associate Professor, Dept. of Mathematics, Government Arts College (A), Karur 639 005, Tamilnadu, India

\*Corresponding Author: Associate Professor, Dept. of Mathematics, Government Arts College (A), Karur – 639 005, Tamilnadu, Mail: krishnatkk@yahoo.co.in; mobile: (+91)97894 54954

Received 09 February; accepted 23 March; published online 01 April; printed 16 April 2013

#### **ABSTRACT**

The object of the present paper is to study the notions of minimal rp-closed set and maximal rp-closed set and their basic properties are studied.

Keywords: rp-closed set and minimal rp-closed set and maximal rp-closed set

#### 1. INTRODUCTION

Nakaoka and Oda have introduced minimal open sets and maximal open sets, which are subclasses of open sets. A. Vadivel and K. Vairamanickam introduced minimal  $rg\alpha$ -open sets and maximal  $rg\alpha$ -open sets in topological spaces.S. Balasubramanian and P.A.S. Vyjayanthi introduced minimal v-open sets and maximal v-open sets; minimal v-closed sets and maximal v-closed sets in topological spaces. Inspired with these developments we further study a new type of closed namely minimal rp-closed sets and maximal rp-closed sets. Throughout the paper a space X means a topological space (X,  $\tau$ ). The class of sp-closed sets is denoted by spC(X). For any subset A of X its complement, interior, closure, sp-interior, sp-closure are denoted respectively by the symbols  $A^c$ ,  $A^o$ ,  $A^-$ , sp( $A^0$ ) and sp( $A^0$ ).

## 2. PRELIMINARIES

#### **Definition 2.1:** A proper nonempty

- (i) closed subset U of X is said to be a **minimal closed set** if any closed set contained in U is  $\phi$  or U.
- (ii) semi-closed subset U of X is said to be a minimal semi-closed set if any semi-closed set contained in U is  $\phi$  or U.
- (iii) pre-closed subset U of X is said to be a minimal pre-closed set if any pre-closed set contained in U is ∮ or U.
- (iv) v-closed subset U of X is said to be a **minimal v-closed set** if any v-closed set contained in U is  $\phi$  or U.
- (v)  $rg\alpha$ -closed subset U of X is said to be a **minimal**  $rg\alpha$ -closed set if any  $rg\alpha$ -closed set contained in U is  $\phi$  or U.

#### **Definition 2.2:** A proper nonempty

- (i) closed subset U of X is said to be a **maximal closed set** if any closed set containing U is X or U.
- (ii) semi-closed subset U of X is said to be a maximal semi-closed set if any semi-closed set containing U is X or U.
- (iii) pre-closed subset U of X is said to be a maximal pre-closed set if any pre-closed set containing U is X or U.
- (iv) v-closed subset U of X is said to be a **maximal v-closed set** if any v-closed set containing U is X or U.
- (v)  $rg\alpha$ -closed subset U of X is said to be a **maximal**  $rg\alpha$ -closed set if any  $rg\alpha$ -closed set containing U is X or U.

### 3. MINIMAL RP-CLOSED SETS AND MAXIMAL RP-CLOSED SETS

We now introduce minimal rp-closed sets and maximal rp-open sets in topological spaces as follows.

**Definition 3.1:** A proper nonempty rp-closed subset F of X is said to be a **minimal** rp-closed set if any rp-closed set contained in F is  $\phi$  or F.

Remark 1: Minimal closed set and minimal rp-closed set are not same:

**Example 1:** Let  $X = \{a, b, c\}$ ;  $\tau = \{\phi, \{a, c\}, X\}$ .  $\{b\}$  is Minimal closed but not Minimal p-closed set,  $\{a\}$  and  $\{c\}$  are Minimal p-closed but not Minimal closed.

**Definition 3.2:** A proper nonempty rp-open  $U \subset X$  is said to be a **maximal** rp-open set if any rp-open set containing U is either X or U.

**Theorem 3.1:** A proper nonempty subset U of X is maximal rp-open set iff X-U is a minimal rp-closed set. **Proof**: Let U be a maximal rp-open set. Suppose X-U is not a minimal rp-closed set. Then  $\exists rp$ -closed set V  $\neq$  X-U such that  $\phi \neq V \subset X$ -U. That is U  $\subset X$ -V and X-V is a rp-open set which is a contradiction for U is a minimal rp-closed set. Conversely let X-U be a minimal rp-closed set. Suppose U is not a maximal rp-open set. Then  $\exists rp$ -open set E  $\neq$  U such that U  $\subset E \neq X$ .

That is  $\phi \neq X$ -E  $\subset X$ -U and X-E is a *rp*-closed set which is a contradiction for X-U is a minimal *rp*-closed set. Therefore U is a maximal *rp*-closed set.

#### Lemma 3.1:

(i) Let U be a minimal *rp*-closed set and W be a *rp*-closed set. Then  $U \cap W = \phi$  or U subset W.

(ii) Let U and V be minimal *rp*-closed sets. Then  $U \cap V = \phi$  or U = V.

**Proof**: (i) Let U be a minimal *rp*-closed set and W be a *rp*-closed set. If  $U \cap W = \phi$ , then there is nothing to prove. If  $U \cap W \neq \phi$ . Then  $U \cap W \subset U$ . Since U is minimal *rp*-closed set, we have  $U \cap W = U$ . Therefore  $U \subset W$ .

(ii) Let U and V be minimal *rp*-closed sets. If  $U \cap V \neq \emptyset$ , then  $U \subseteq V$  and  $V \subseteq U$  by (i). Therefore U = V.

**Theorem 3.2:** Let U be minimal rp-closed set. If  $x \in U$ , then  $U \subseteq W$  for any regular open neighborhood W of x.

**Proof**: Let U be a minimal rp-closed set and x be an element of U. Suppose  $\exists$  an regular open neighborhood W of x such that U  $\not\subset$  W. Then U  $\cap$  W is a rp-closed set such that U  $\cap$  W  $\subset$  U and U  $\cap$  W  $\neq$   $\emptyset$ . Since U is a minimal rp-closed set, we have U  $\cap$  W = U. That is U  $\subset$  W, which is a contradiction for U  $\not\subset$  W. Therefore U  $\subset$  W for any regular open neighborhood W of x.

**Theorem 3.3:** Let U be a minimal *rp*-closed set. If  $x \in U$ , then  $U \subseteq W$  for some *rp*-closed set W containing x.

**Theorem 3.4:** Let U be a minimal rp-closed set. Then  $U = \bigcap \{W: W \in RPO(X, x)\}$  for any element x of U. **Proof**: By theorem[3.3] and U is rp-closed set containing x, we have  $U \subseteq \bigcap \{W: W \in RPO(X, x)\} \subseteq U$ .

**Theorem 3.5:** Let U be a nonempty *rp*-closed set. Then the following three conditions are equivalent.

(i) U is a minimal rp-closed set

(ii)  $U \subseteq rp(S)^-$  for any nonempty subset S of U

(iii)  $rp(U)^- = rp(S)^-$  for any nonempty subset S of U.

**Proof**: (i)  $\Rightarrow$  (ii) Let  $x \in U$ ; U be minimal rp-closed set and  $S(\neq \phi) \subset U$ . By theorem[3.3], for any rp-closed set W containing x,  $S \subset U \subset W \Rightarrow S \subset W$ . Now  $S = S \cap U \subset S \cap W$ . Since  $S \neq \phi$ ,  $S \cap W \neq \phi$ . Since W is any rp-closed set containing x, by theorem[3.3],  $x \in rp(S)^-$ . That is  $x \in U \Rightarrow x \in rp(S)^- \Rightarrow U \subset rp(S)^-$  for any nonempty subset S of U.

(ii)  $\Rightarrow$  (iii) Let S be a nonempty subset of U. That is S  $\subset$  U  $\Rightarrow$   $rp(S)^- \subset rp(U)^- \rightarrow$  (1). Again from (ii) U  $\subset$   $rp(S)^-$  for any S( $\neq$   $\phi$ )  $\subset$  U  $\Rightarrow$   $rp(U)^- \subset rp(rp(S)^-)^- = rp(S)^-$ . That is  $rp(U)^- \subset rp(S)^- \rightarrow$  (2). From (1) and (2), we have  $rp(U)^- = rp(S)^-$  for any nonempty subset S of U.

(iii)  $\Rightarrow$  (i) From (3) we have  $rp(U)^- = rp(S)^-$  for any nonempty subset S of U. Suppose U is not a minimal rp-closed set. Then  $\exists$  a nonempty rp-closed set V such that  $V \subset U$  and  $V \neq U$ . Now  $\exists$  an element a in U such that  $a \notin V \Rightarrow a \in V^c$ . That is  $rp(\{a\})^- \subset rp(V^c)^- = V^c$ , as  $V^c$  is rp-closed set in X. It follows that  $rp(\{a\})^- \neq rp(U)^-$ . This is a contradiction for  $rp(\{a\})^- = rp(U)^-$  for any  $\{a\}(\neq \phi) \subset U$ . Therefore U is a minimal rp-closed set.

**Theorem 3.6:** If  $V \neq \emptyset$  finite *rp*-closed set. Then  $\exists$  at least one (finite) minimal *rp*-closed set U such that  $U \subseteq V$ .

**Proof**: Let V be a nonempty finite rp-closed set. If V is a minimal rp-closed set, we may set U = V. If V is not a minimal rp-closed set, then  $\exists$  (finite) rp-closed set V<sub>1</sub> such that  $\phi \neq V_1 \subset V$ . If V<sub>1</sub> is a minimal rp-closed set, we may set U = V<sub>1</sub>. If V<sub>1</sub> is not a minimal rp-closed set, then  $\exists$  (finite) rp-closed set V<sub>2</sub> such that  $\phi \neq V_2 \subset V_1$ . Continuing this process, we have a sequence of rp-closed sets V  $\supset$  V<sub>1</sub>  $\supset$  V<sub>2</sub>  $\supset$  V<sub>3</sub>  $\supset$  .....  $\supset$  V<sub>k</sub>  $\supset$  ..... Since V is a finite set, this process repeats only finitely. Then finally we get a minimal rp-closed set U = V<sub>n</sub> for some positive integer n.

**Corollary 3.1:** Let X be a locally finite space and V be a nonempty rp-closed set. Then  $\exists$  at least one (finite) minimal rp-closed set U such that U  $\subset$  V.

**Proof**: Let X be a locally finite space and V be a nonempty  $\mathit{rp}$ -closed set. Let x in V. Since X is locally finite space, we have a finite open set  $V_x$  such that x in  $V_x$ . Then  $V \cap V_x$  is a finite  $\mathit{rp}$ -closed set. By Theorem 3.6  $\exists$  at least one (finite) minimal  $\mathit{rp}$ -closed set U such that U  $\subseteq$  V $\cap$ V<sub>x</sub>. That is U  $\subseteq$  V $\cap$ V<sub>x</sub>  $\subseteq$  V. Hence  $\exists$  at least one (finite) minimal  $\mathit{rp}$ -closed set U such that U  $\subseteq$  V.

Corollary 3.2: If V is finite minimal open set. Then  $\exists$  at least one (finite) minimal rp-closed set U s.t. U  $\subseteq$  V.

**Proof**: Let V be a finite minimal open set. Then V is a nonempty finite rp-closed set. By Theorem 3.6,  $\exists$  at least one (finite) minimal rp-closed set U such that U  $\subseteq$  V.

**Theorem 3.7:** Let U; U<sub> $\lambda$ </sub> be minimal *rp*-closed sets for any  $\lambda \in \Gamma$ . If  $U \subset \bigcup_{\lambda \in \Gamma} U_{\lambda}$ , then  $\exists \lambda \in \Gamma$  s.t.  $U = U_{\lambda}$ .

**Proof**: Let  $U \subset U_{\lambda \in \Gamma}U_{\lambda}$ . Then  $U \cap (U_{\lambda \in \Gamma}U_{\lambda}) = U$ . That is  $U_{\lambda \in \Gamma}(U \cap U_{\lambda}) = U$ . Also by lemma[3.1] (ii),  $U \cap U_{\lambda} = \phi$  or  $U = U_{\lambda}$  for any  $\lambda \in \Gamma$ . It follows that  $\exists$  an element  $\lambda \in \Gamma$  such that  $U = U_{\lambda}$ .

**Theorem 3.8:** Let U;  $U_{\lambda}$  be minimal p-closed sets for any  $\lambda \in \Gamma$ . If  $U = U_{\lambda}$  for any  $\lambda \in \Gamma$ , then  $(U_{\lambda \in \Gamma}U_{\lambda}) \cap U = \phi$ .

**Proof**: Suppose that  $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U \neq \phi$ . That is  $\bigcup_{\lambda \in \Gamma} (U_{\lambda} \cap U) \neq \phi$ . Then  $\exists$  an element  $\lambda \in \Gamma$  such that  $U \cap U_{\lambda} \neq \phi$ . By lemma 3.1(ii), we have  $U = U_{\lambda}$ , which contradicts the fact that  $U \neq U_{\lambda}$  for any  $\lambda \in \Gamma$ . Hence  $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U = \phi$ . We now introduce maximal p-closed sets in topological spaces as follows.

**Definition 3.2:** A proper nonempty rp-closed  $F \subset X$  is said to be maximal rp-closed set if any rp-closed set containing F is either X or F.

Remark 2: Maximal closed set and maximal rp-closed set are not same.

Example 2: In Example 1, {b} is Maximal closed but not Maximal rp-closed, {a, b} and {b, c} are Maximal rp-closed but not Maximal closed.

Remark 3: From the known results and by the above example we have the following implications:

**Theorem 3.9:** A proper nonempty subset F of X is maximal *rp*-closed set iff X-F is a minimal *rp*-open set.



## Indian Journal of Engineering · ANALYSIS · MATHEMATICS

**Proof**: Let F be a maximal rp-closed set. Suppose X-F is not a minimal rp-open set. Then  $\exists$  rp-open set  $U \neq X$ -F such that  $\phi = X$ -F such that U  $\subset$  X-F. That is F  $\subset$  X-U and X-U is a *rp*-closed set which is a contradiction for F is a minimal *rp*-open set. Conversely let X-F be a minimal rp-open set. Suppose F is not a maximal rp-closed set. Then  $\exists rp$ -closed set  $E \neq F$  such that  $F \subset E \neq X$ . That is  $\phi \neq X$ -E  $\subset$  X-F and X-E is a *rp*-open set which is a contradiction for X-F is a minimal *rp*-open set. Therefore F is a maximal rp-closed set.

**Theorem 3.10:** (i) Let F be a maximal *rp*-closed set and W be a *rp*-closed set. Then  $F \cup W = X$  or  $W \subseteq F$ .

(ii) Let F and S be maximal *rp*-closed sets. Then  $F \cup S = X$  or F = S.

**Proof**: (i) Let F be a maximal rp-closed set and W be a rp-closed set. If  $F \cup W = X$ , then there is nothing to prove. Suppose F  $\cup$  W  $\neq$  X. Then F  $\subset$  F  $\cup$  W. Therefore F $\cup$ W = F  $\Rightarrow$  W  $\subset$  F.

(ii) Let F and S be maximal rp-closed sets. If  $F \cup S \neq X$ , then we have  $F \subseteq S$  and  $S \subseteq F$  by (i). Therefore F = S.

**Theorem 3.11:** Let F be a maximal rp-closed set. If x is an element of F, then for any rp-closed set S containing x, F  $\cup$  S = X

**Proof**: Let F be a maximal rp-closed set and x is an element of F. Suppose  $\exists$  rp-closed set S containing x such that  $F \cup S \neq \emptyset$ X. Then  $F \subset F \cup S$  and  $F \cup S$  is a rp-closed set, as the finite union of rp-closed sets is a rp-closed set. Since F is a rpclosed set, we have  $F \cup S = F$ . Therefore  $S \subseteq F$ .

**Theorem 3.12**: Let  $F_{\alpha}$ ,  $F_{\beta}$ ,  $F_{\delta}$  be maximal p-closed sets such that  $F_{\alpha} \neq F_{\beta}$ . If  $F_{\alpha} \cap F_{\beta} \subseteq F_{\delta}$ , then either  $F_{\alpha} = F_{\delta}$  or  $F_{\beta} = F_{\delta}$ **Proof**: Given that  $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$ . If  $F_{\alpha} = F_{\delta}$  then there is nothing to prove.

If  $F_{\alpha} \neq F_{\delta}$  then we have to prove  $F_{\beta} = F_{\delta}$ . Now  $F_{\beta} \cap F_{\delta} = F_{\beta} \cap (F_{\delta} \cap X) = F_{\beta} \cap (F_{\delta} \cap (F_{\alpha} \cup F_{\beta}))$  (by thm. 3.10 (ii))  $= F_{\beta} \cap ((F_{\delta} \cap X))$  $F_{\alpha}) \cup (F_{\delta} \cap F_{\beta})) = (F_{\beta} \cap F_{\delta} \cap F_{\alpha}) \cup (F_{\beta} \cap F_{\delta} \cap F_{\beta}) = (F_{\alpha} \cap F_{\beta}) \cup (F_{\delta} \cap F_{\beta}) \text{ (by } F_{\alpha} \cap F_{\beta} \subset F_{\delta}) = (F_{\alpha} \cup F_{\delta}) \cap F_{\beta} = X \cap F_{\beta}$ (Since  $F_{\alpha}$  and  $F_{\delta}$  are maximal rp-closed sets by theorem[3.10](ii),  $F_{\alpha} \cup F_{\delta} = X$ ) =  $F_{\beta}$ . That is  $F_{\beta} \cap F_{\delta} = F_{\beta} \Rightarrow F_{\beta} \subset F_{\delta}$  Since  $F_{\beta} \cap F_{\delta} = F_{\delta} \Rightarrow F_{\delta} \cap F_{\delta} \Rightarrow F_{\delta} \Rightarrow F_{\delta} \cap F_{\delta} \Rightarrow F_{\delta} \cap F_{\delta} \Rightarrow F_{\delta} \Rightarrow F_{\delta} \cap F_{\delta} \Rightarrow F_{\delta} \Rightarrow F_{\delta} \cap F_{\delta} \Rightarrow F_{\delta} \Rightarrow$ and  $F_{\delta}$  are maximal *rp*-closed sets, we have  $F_{\beta} = F_{\delta}$  Therefore  $F_{\beta} = F_{\delta}$ 

**Theorem 3.13:** Let  $F_{\alpha}$ ,  $F_{\beta}$  and  $F_{\delta}$  be different maximal *rp*-closed sets to each other. Then  $(F_{\alpha} \cap F_{\beta}) \subset (F_{\alpha} \cap F_{\delta})$ .  $\textbf{Proof: Let } (F_{\alpha} \cap F_{\beta}) \subset (F_{\alpha} \cap F_{\delta}) \Rightarrow (F_{\alpha} \cap F_{\beta}) \cup (F_{\delta} \cap F_{\beta}) \subset (F_{\alpha} \cap F_{\delta}) \cup (F_{\delta} \cap F_{\beta}) \Rightarrow (F_{\alpha} \cup F_{\delta}) \cap F_{\beta} \subset F_{\delta} \cap (F_{\alpha} \cup F_{\beta}).$ Since by theorem 3.10(ii),  $F_{\alpha} \cup F_{\delta} = X$  and  $F_{\alpha} \cup F_{\beta} = X \Rightarrow X \cap F_{\beta} \subset F_{\delta} \cap X \Rightarrow F_{\beta} \subset F_{\delta}$  From the definition of maximal rpclosed set it follows that  $F_{\beta} = F_{\delta}$ , which is a contradiction to the fact that  $F_{\alpha}$ ,  $F_{\beta}$  and  $F_{\delta}$  are different to each other. Therefore ( $F_{\alpha}$ 

**Theorem 3.14:** Let F be a maximal rp-closed set and x be an element of F. Then  $F = \bigcup \{ S: S \text{ is a } rp\text{-closed set containing } x \}$ such that  $F \cup S \neq X$ .

**Proof**: By theorem 3.12 and fact that F is a *rp*-closed set containing x, we have  $F \subset \bigcup \{S: S \text{ is a } rp\text{-closed set containing x}\}$ such that  $F \cup S \neq X$  – F. Therefore we have the result.

Theorem 3.15: Let F be a proper nonempty cofinite rp-closed set. Then ∃ (cofinite) maximal rp-closed set E such that F ⊂

**Proof**: If F is maximal rp-closed set, we may set E = F. If F is not a maximal rp-closed set, then  $\exists$  (cofinite) rp-closed set  $F_1$ such that  $F \subset F_1 \neq X$ . If  $F_1$  is a maximal rp-closed set, we may set  $E = F_1$ . If  $F_1$  is not a maximal rp-closed set, then  $\exists$  a (cofinite) rp-closed set  $F_2$  such that  $F \subseteq F_1 \subseteq F_2 \neq X$ . Continuing this process, we have a sequence of rp-closed,  $F \subseteq F_2 \neq X$ .  $F_1 \subseteq F_2 \subseteq ... \subseteq F_k \subseteq ...$  Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal rpclosed set  $E = E_n$  for some positive integer n.

Theorem 3.16: Let F be a maximal rp-closed set. If x is an element of X-F. Then X-F. ☐ E for any rp-closed set E containing

**Proof**: Let F be a maximal rp-closed set and x in X-F. E  $\not\subset$  F for any rp-closed set E containing x. Then E  $\cup$  F = X by theorem 3.10(ii). Therefore X-F ⊂ E.

#### 4. CONCLUSION

In this paper we introduced the concept of minimal rp-closed and maximal rp-closed sets, studied their basic properties.

#### REFERENCES

 $\cap \mathsf{F}_{\beta}$ )  $\not\subset (\mathsf{F}_{\alpha} \cap \mathsf{F}_{\delta})$ .

- 1. Balasubramanian S, Sandhya C. Minimal gs-open sets and maximal gs-closed sets, Asian Journal of Current Engineering and Maths, 2012, 1, 2, 34 - 38
- 2. Balasubramanian S, Venkatesh KA, Sandhya C. Minimal pg-open sets and maximal pg-closed sets, Inter. J. Math. Archive, 2012,
- 3. Balasubramanian S. Minimal g-open sets, Asian Journal of current Engineering and Maths, 2012, 1, 3, 69-73
- 4. Balasubramanian S, Chaithanya Ch. Minimal  $\alpha$ g-open sets, Aryabhatta Journal of Mathematics and Informatics, 2012, 4(1), 83 94
- 5. Balasubramanian S, Venkatesh KA, Sandhya C. Minimal spg-open sets and maximal spg-closed sets, AJCEM (In Press)
- 6. Nakaoka F, Oda N. Some Properties of Maximal Open Sets, Int. J. Math. Sci., 2003, 21, 1331-1340
- 7. Nakaoka F, Oda N. Some Applications of Minimal Open Sets, Int. J. Math. Sci., 2001, 27-8, 471-476
- 8. Nakaoka F, Oda N. On Minimal Closed Sets, Proceeding of Topological spaces Theory and its Applications, 2003, 5, 19-21