
REVIEW

Ashish Yadav et al.
Dalvik - Virtual Machine,
Indian Journal of Engineering, 2012, 1(1), 100-104,
© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)

1
0
0

Ashish Yadav J1, Abhishek Vats J2, Aman Nagpal J3, Avinash Yadav J4

1. Department of Computer Science, Dronacharya college of Engineering, Gurgaon, India, E-mail: ashish.y124@yahoo.com
2. Department of Computer Science, Dronacharya college of Engineering, Gurgaon, India, E-mail: abhishekvats_0909@yahoo.com
3. Department of Computer Science, Dronacharya college of Engineering, Gurgaon, India, E-mail: russel.aman@gmail.com
4. Department of Computer Science, Dronacharya college of Engineering, Gurgaon, India, E-mail: av9sh.hr@gmail.com

Received 26 September; accepted 19 October; published online 01 November; printed 16 November 2012

ABSTRACT
Android is a software stack for mobile devices that contains an operating system, middleware and key applications. Android is a software platform and
operating system for mobile devices based on the Linux operating system and developed by Google and the Open Handset Alliance. It allows developers
to Write handle code in a Java-like language that utilizes Google-developed Java libraries, but does not support programs developed in native code. The
presentation of the Android platform on 5 November 2007 was announced with the founding of the Open Handset Alliance, a consortium of 34 hardware,
software and telecom companies devoted to advancing open standards for mobile devices. When released in 2008, most of the Android platform will be
made obtainable under the Apache free-software and open-source license. Open Android provide the permission to access core mobile device
functionality through standard API calls. All applications are equivalent Android does not differentiate between the phone's basic and third-party
applications even the dialer or home screen can be replaced. Breaking down boundaries combine information from the web with data on the phone such
as contacts or geographic location to create new user experience. Fast and easy development The SDK contain what need to build and run Android
applications, counting a true device emulator and advanced debugging tools.

Keywords:- Virtual machine, Java Virtual Machine, Register based VM, Dalvik Virtual Machine, .dex file format, Licence, Security, Architecture

1. INTRODUCTION
The Dalvik virtual machine is a register-based virtual machine, intended and written by Dan Bornstein with contributions from other Google engineers as
part of the Android mobile phone platform. It is optimized for low memory needs, and is designed to allow multiple VM instances to run at once, relying on
the fundamental operating system for process isolation, memory management and threading support. Dalvik is often referred to as a Java Virtual
Machine, but this is not strictly exact, as the bytecode on which it operates is not Java bytecode. Instead, a tool named dx, included in the Android SDK,
transform the Java Class files of Java classes compiled by a regular Java compiler into another class file format (the .dex format).

2. VIRTUAL MACHINE
A Virtual Machine (VM) is a software environment that can be an emulator, an operating system or a total hardware virtualization, that has an
implementation of resources without the real hardware being present. As an emulator it permit applications and operating systems to run on hardware that
has a different processor architecture than the present one, while as an operating system VM virtualizes the server on operating system, and in-case of
hardware virtualization two or more different operating systems can run simultaneously on the same hardware. Thus the key idea of virtual machine is to

provide an environment that
can execute instructions other
than those linked with the host
environment regardless of the
hardware and software.

2.1. Types of Virtual
Machines
VM’s act as hardware for
performing operations just as if
genuine hardware is present.
VM can be divided into two
categories.

2.1.1. Based on its
working and
functionality
1. System Virtual Machine
(supports execution of a
complete operating system)
2. Process Virtual Machine
(supports execution of a single
process)

 Review Indian Journal of Engineering, Volume 1, Number 1, November 2012

 Dalvik - Virtual Machine

Engineering

Indian Journal of
IS

S
N

 2
3
1
9
 –

 7
7

5
7

E

IS
S

N
 2

3
1
9
 –

 7
7
6
5

Figure 1

Satck Based V/s Registered Based

https://creativecommons.org/licenses/by/4.0/

REVIEW

Ashish Yadav et al.
Dalvik - Virtual Machine,
Indian Journal of Engineering, 2012, 1(1), 100-104,
© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)

1
0
1

2.1.2. Based on its architecture
1. Stack based VM (uses instructions to load in a stack for execution)
2. Register based VM (uses instructions to be encoded in source and destination registers)

2.2. System VM vs Process VM
Virtual Machines mostly divide into two broad categories, i.e. System VM (also known as hardware virtual machine) and Process VM (also known as
application virtual machine). The categorization is based on their usage and level of correspondence to the connected physical machine. The system VM
simulates the complete system hardware stack and supports the execution of complete operating system. On the other hand, Process VM adds up layer
over an operating system which is use to replicate the programming environment for the execution of individual process. The main advantages of system
VM includes consolidation (it allows the multiple operating systems co- existence on single computer system with strong isolation to each other),
application provisioning, maintenance, high availability & disaster recovery. Besides later advantages, regarding development aspects their advantages
are that it allows sandboxing, faster reboot and better debugging access.

2.3. Stack Based VM vs Register Based VM
For many years, in virtual machine architecture, the stack based VMs was the architectural option due to simplicity of the VM implementation and the size
of executables for stack architectures (Fig.1). Registered-based VM can be an attractive substitute to stack-based VM due to the reason that it allows a
number of executed VM instructions to be substantially reduced. A study on analysis of different VM shows that register-based architecture require an
average of 47% less executed VM instructions than the stack based. On the other hand the register code is 25% larger than the corresponding stack code
but this increased cost of fetching more VM instructions due to larger code size involve only 1.07% extra real machine loads per VM instruction which is
negligible. The overall performance of the register-based VM is that it takes, on average, a 32.3% less time to execute standard benchmark.

3. JAVA VIRTUAL MACHINE
A Java virtual machine (JVM), an implementation of the Java Virtual Machine Specification,
interprets compiled Java binary code (called bytecode) for a computer's processor (or
"hardware platform") so that it can execute a Java program's instructions. Java was planned to
allow application programs to be built that could be run on any platform without having to be
rewritten or recompiled by the programmer for each separate platform. A Java virtual machine
makes this likely because it is aware of the specific instruction lengths and other particularities
of the platform. The Java Virtual Machine Specification defines an abstract rather than a
genuine machine or processor. The Specification specifies an instruction set, a set of registers,
a stack, a "garbage heap," and a method area. Once a Java virtual machine has been
implemented for a given platform, any Java program (which, after compilation, is called
bytecode) can run on that platform. A Java virtual machine can also interpret the bytecode one
instruction at a time (mapping it to a real processor instruction) or the bytecode can be
compiled additional for the real processor using what is called a just-in-time compiler. Now we
describe the working of the Java Virtual Machine. In this First the programmer write the
program in java language and the save the program with (.java) file format. JVM consists of
Just in Compiler which compiles the .class file into Bytecode (.class) file format. After that the
Java Virtual Machine runs the class file format on different platforms (Fig.2).

4. DALVIK VIRTUAL MACHINE
Dalvik is a virtual machine that is planned specifically for the Android platform. Named after the
fishing village of Dalvik in Iceland, it was initially written by Dan Bornstein. Unlike most of
virtual machines that are stack based, Dalvik architecture is register based. It is optimized to
use less space. The interpreter is simplifed for faster execution. It executes its own Dalvik byte
code rather than Java byte code. Byte Codes are discussed (Fig.3).

4.1. Application Framework
Developers have complete access to the same framework APIs used by the core applications. The application architecture is designed to simplify the use
again of components; any application can publish its capabilities and any other application may then make use of those capabilities (subject to security
constraints enforced by the framework). This same mechanism allows components to be replaced by the user. Underlying all applications is a set of
services and systems, including:

• A rich and extensible set of Views that can be used to construct an application, including lists, grids, text boxes, buttons, and even an embeddable
web browser

• Content Providers that enable applications to admission data from other applications (such as Contacts), or to share their own data.

• A Resource Manager, providing access to non-code resources such as localized strings, graphics, and latfiles

• A Notification Manager that enables all applications to display custom alert in the status bar

• Activity Manager that manages the life cycle of applications and provide a common navigation back stack

4.2. Libraries
Android includes a set of C/C++ libraries used by different components of the Android system. These capabilities are exposed to developers through the
Android application framework. Some of the core libraries are listed below System C library

• a BSD → derived implementation of the standard C system library (libc), tuned for fixed Linux-based devices

• Media Libraries → based on Packet Video's Open CORE; the libraries support playback and recording of lots of popular audio and video formats, as
well as static image files, including MPEG4, H.264, MP3, AAC,AMR, JPG, and PNG

• Surface Manager → manages admission to the display subsystem and seamlessly composites 2D and 3Dgraphic layers from multiple applications·

• SGL → the underlying 2D graphics engine 3D libraries an implementation base on OpenGL ES 1.0 APIs; the libraries use either hardware
3Dacceleration (where available) or the included, highly optimized 3D software rasterizer

• Free Type → bitmap and vector font rendering

• SQLite → a powerful and lightweight relational database engine available to all applications.

4.3. Android Runtime
Android include a collection of core libraries that provides most of the functionality available in the core libraries of the Java programming language. Every
Android application runs in its own process, with its own instance of the Dalvik virtual machine. Dalvik has been written so that a device can run multiple
Vms efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which is optimized for least memory footprint. The VM is register-
based, and runs classes compiled by a Java language compiler that have been transformed into the .dex format by the included "dx" tool. The Dalvik VM
depends on the Linuxkernel for underlying functionality such as threading and low-level memory management.

4.4. Linux Kernel

Figure 2

Working of Java Virtual Machine

https://creativecommons.org/licenses/by/4.0/

REVIEW

Ashish Yadav et al.
Dalvik - Virtual Machine,
Indian Journal of Engineering, 2012, 1(1), 100-104,
© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)

1
0
2

Android Architecture is based on Linux 2.6
kernel. It helps to handle security, memory
management, process management, network
stack and other important issues. Therefore, the
user should bring Linux in his mobile device as
the main operating system and install all the
drivers required in order to run it. Android
provides the support for the Qualcomm MSM7K
chipset family. For instance, the current kernel
tree supports Qualcomm MSM 7200A chipsets,
but in the second half of 2008 we should see
mobile devices with stable version Qualcomm
MSM 7200, which includes main features:
1. WCDMA/HSUPA and EGPRS network
support
2. Bluetooth 1.2 and Wi-Fi support
3. Digital audio support for mp3 and other
formats
4. Support for Linux and other third-party
operating systems
5. Java hardware acceleration and support for
Java applications
6. Qcamera up to 6.0 mega pixels

All mobile systems character little RAM, low
performance CPU, slow internal flash memory,
and limited battery power. Therefore, a need was
felt for a VM that could provide better
performance with restricted resources. So came
Dalvik, designed to run on Linux kernel, which
provides process threading, pre-processing for
faster application execution, User ID based
security procedures and inter-process
communication. Dalvik works on low resourced
ARM devices (Advanced RISC Machines), is 32-
bit processor architecture based on reduced
instruction set computer developed by ARM
limited). ARM processors are used because of
their simple architecture making it appropriate for

low power devices such as cell phones. Every Android application runs in its own process, with its own instance of the Dalvik virtual machine. Dalvik has
been written so that a device can run several VMs efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which is optimized for
minimal memory footprint. The VM is register-based, and runs classes compiled by a Java language compiler that have been changed into the .dex format
by the included "dx" tool. The Dalvik VM relies on the Linux kernel for original functionality such as threading and low-level memory management.

5. WORKING OF DVM
The working of Dalvik Virtual Machine is explained with the help of DVM diagram (Fig.4)
o Program is written in java language
o The program is compiled to Bytecode which create the .class file for that program
o “dx” tool converts the .class file into .dex file
o Dalvik VM interpret the .dex format file

6. LICENSE OF DALVIK
Dalvik has licensed its source code under the Apache license, making it attractive and economical for mobile phone carriers, since they can use and
adjust it without paying licensing fees. Moreover, the Apache license lets them close any part of the code they want. Comparative to Java machines that
are either closed source making them costly or open source.

7. SECURITY ISSUES
Dalvik has an supplementary layer for security, including process separation and file permissions to
the underlying Linux platform. Dalvik is comparatively secure because it provides sharing of code
between processes without giving it permissions to edit the mutual code. Android’s security
architecture ensures no application, by default, has permission to perform any operations that would
adversely impact other applications, the operating system, or the user. This includes reading or writing
the user's confidential data (such as contacts or e-mails), reading or writing another application's files,
performing network access, keeping the device awake, etc These features are implement across the
operating system (OS) level and framework level of Android and not within the Dalvik VM. As
mentioned previously, each application is run within its own instance of the VM, which itself is running
in its own OS process. Each process is assign its own user ID that can only access a limited set of
features within the system and can only access its own data. Therefore, an application cannot interfere
with other applications. If extra security permissions are required, the application can request them
through its Manifest file. These permissions are verified at application installation time by the
framework and are compulsory by the OS at runtime. To address memory constraints and allow for
fast start-up times, Dalvik shares core, read-only libraries between VM processes. The sharing is done
securely by giving the VM processes permission to read the code but not edit it.

8. ARCHITECTURE
Dalvik is a register base architecture making it faster and performance proficient for running application
code. It has to operate on Dalvik byte code rather than Java byte code. Register based VM has
potential advantages over the stack based VM as discussed. Now we discuss the presently supported
functions.

Figure 3

Description of each Layer of DVM

Figure 4

Working of Dalvik Virtual Machine

https://creativecommons.org/licenses/by/4.0/

REVIEW

Ashish Yadav et al.
Dalvik - Virtual Machine,
Indian Journal of Engineering, 2012, 1(1), 100-104,
© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)

1
0
3

The supported functionalities are:
→ Dalvik execution file format.
→ Dalvik instruction set
→ J2ME CLDC API
→ Multi-threading

The supported platforms are:
→ Linux
→ BSD
→ Mac OSX
→ Unix

9. DEX. FILE FORMAT
Dalvik Executable is compiled by Dalvik VM, and are zip into a
single .apk (Android Package) file on the device. The .dex files
can be created automatically by translating compiled
applications written in the Java programming language. The
.dex file format uses mutual, type-specific constant pools as
it’s primary mechanism for conserving memory. A constant
pool stores all literal constant values used within the class.
This includes values such as string constants used in your
code as well as field, variable, class, interface, and method
names. Rather than store these values throughout the class,
they are always referred to by their index in the constant pool.
The constant pools in the .class and .dex files are highlighted
in blue above. In the case of the .class file, each class has its
own private, mixed constant pool. It is mixed in that all types of
constants (field, variable, class, etc.) are mixed together.
Contrast this to the .dex file that consists many classes, all of
which share the same type-specific constants pools.
Duplication of constants across .class files is eliminated in the
.dex format (Fig.5).

• Java bytecode is stored within .class files

• The “dx” tool is used to convert the .class files into a .dex,
or Dalvik Executable file.

• Whereas a .class file contains only one class, a .dex file
contains multiple classes

• Then the .dex file is executed on the Dalvik VM

• The .dex file has been optimized for memory usage

10. SPECIFICATIONS

Feature

Chipset
Memory
Storage
Primary Display
Camera
USB
Bluetooth

Minimum Requirement

ARM-based
128 MB RAM; 256 MB Flash External
Mini or Micro SD
16-bit color or better
2MP CMOS
Standard mini-B USB interface
1.2 or 2.0

11. ADVANTAGES
• In DEX all the classes of the application are packed into one file.

• Different pools are created to store strings, constants, variables, field, methods

• It saves the memory via minimal repetitions, implicit labelling

• Verification of byte code is done

• An interpreter is simplified for faster execution

• Duplicate strings and other constants used in multiple class files are included only once in the .dex output to conserve space

• It works on low resourced ARM devices (Advanced RISC Machines)

• It provides process threading, pre-processing for faster application execution

• Able to work with limited resources

12. CONCLUSION
Android is a really open, free development platform based on Linux and open source. Handset maker scan use and modify the platform without paying a
royalty A component-based architecture inspired by Internet mash-ups. Parts of one application can be used in another in ways not initially envisioned by
the developer. can even replace built-in components with own improved versions. This will unleash a new round of creativity in the mobile space.

• Android is wide open to all: industry, developers and users

• Participating in many of the profitable open source projects

• Aims to be as simple to build for as the web.

• Google Android is stepping into the next level of Mobile Internet

REFERENCES
1. “Device Requirements” Android Source Code <git://android.git.kernel.org/platform/development/pdk/docs/guide/system_requirements.jd>

Figure 5

Comparison between .class file format and .dex file format

https://creativecommons.org/licenses/by/4.0/

REVIEW

Ashish Yadav et al.
Dalvik - Virtual Machine,
Indian Journal of Engineering, 2012, 1(1), 100-104,
© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)

1
0
4

2. “Dalvik” Android Source Code <git://android.git.kernel.org/platform/development/pdk/docs/guide/dalvik.jd>
3. Lindholm, Tim and Yellin, Frank. The Java Virtual Machine Specification. Second Edition. Sun Microsystems, 1999:
4. Pavone, Michael. “Dex File Format” http://www.retrodev.com/android/dexformat.html
5. Bornstein, Dan. “Dalvik VM Internals” 2008 Google I/O Session Videos and Slides http://sites.google.com/site/io/dalvik-vm-internals
6. Jones, Derek. “Register vs. stack based VMs” http://shape-of-code.coding-guidelines.com/2009/09/register-vs-stackbased-vms/
7. “Dalvik Virtual Machine” < http://www.dalvikvm.com/>
8. “Working of Dalvik Virtual Machine” <http://www.scribd.com/doc/53133105/How-the-Dalvik-Virtual-Machine-Works>
9. “Usage of SecurityManger in Androids Permission-System.” Android Security Discussions <http://groups.google.com/group/android-security-

discuss/browse_thread/thread/847e99bfb2276eff>
10. “Architecture” <http://en.wikipedia.org/wiki/Dalvik_(software)>
11. “Overview of DVM” <http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf>
12. “Specification” <http://imsciences.edu.pk/serg/wp-content/uploads/2009/07/Analysis-of-Dalvik-VM.pdf>
13. “.dex file format” <http://imsciences.edu.pk/serg/wp-content/uploads/2009/07/Analysis-of-Dalvik-VM.pdf>

.

https://creativecommons.org/licenses/by/4.0/
http://www.retrodev.com/android/dexformat.html
http://sites.google.com/site/io/dalvik-vm-internals
http://shape-of-code.coding-guidelines.com/2009/09/register-vs-stackbased-vms/
http://en.wikipedia.org/wiki/Dalvik_(software)
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://imsciences.edu.pk/serg/wp-content/uploads/2009/07/Analysis-of-Dalvik-VM.pdf
http://imsciences.edu.pk/serg/wp-content/uploads/2009/07/Analysis-of-Dalvik-VM.pdf

