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ABSTRACT
In this paper we define almost sg-normality and mild sg-normality, continue the study of further properties of sg-normality. We show that these three
axioms are regular open hereditary. Also define the class of almost sg-irresolute mappings and show that sg-normality is invariant under almost sg-
irresolute M-sg-open continuous surjection.
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1. INTRODUCTION

|n 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the Ti and T2 spaces,
namely, S1 and Sz. Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-
convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-
US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired
with these we introduce sg-Normal Almost- sg-Normal, Mildly- sg-Normal, sg-US, sg-S1 and sg-S2. Also we examine sg-convergence, sequentially sg-
compact, sequentially sg-continuous maps, and sequentially sub sg-continuous maps in the context of these new concepts. All notions and symbols which
are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no
separation axioms are assumed explicitly stated.

2. PRELIMINARIES
2.1. Definition 2.1

Ac X is called (i) g-closed if cl Ac U whenever Ac U and U is open in X.
(i) sg-closed if scl(A) ¢ U whenever Ac U and U is semiopen in X.

2.2. Definition 2.2

A space X is said to be

(i) T1 (T2) if for any x = y in X, there exist (disjoint) open sets U; V in X such that xeU and yeV.

(i) Weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F1 and F2 , there exist disjoint open sets U and V such that F1
UandF2c V.

(iv) Almost normal if for each closed set A and each regular closed set B such that AnB = ¢, there exist disjoint open sets U and V such that AcU and
BcV.

(v) Weakly regular if for each pair consisting of a regular closed set A and a point x such that A N {x} = ¢, there exist disjoint open sets U and V such that x
e U and AcV.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.

(vii) Ro if for any point x and a closed set F with x¢F in X, there exists a open set G containing F but not x.

(viii) R iff for x, y € X with cl{x} = cl{y}, there exist disjoint open sets U and V such that cl{x}c U, cl{y}cV.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges.

(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.

(xi) pre-S1 if it is pre-US and every sequence <xn> pre-converges with subsequence of <x»> pre-side points.

(xii) pre-Sz if it is pre-US and every sequence <xn> in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X.

2.3. Definition 2.3

Let Ac X. Then a point x is said to be a

(i) limit point of A if each open set containing x contains some point y of A such that x = y. 0
(i) To—limit point of A if each open set containing x contains some point y of A such that cl{x} # cl{y}, or equivalently, such that they are topologically Yo}
distinct.
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(iii) pre-To—limit point of A if each open set containing x contains some point y of A such that pcl{x} = pcl{y}, or equivalently, such that they are topologically
distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other;
equivalently if they have disjoint closures. In fact, the To—axiom is precisely to ensure that any two distinct points are topologically distinct.

Example 1: Let X ={a, b, ¢, d} and 7 = {{a}, {b, c}, {a, b, c}, X, ¢}. Then b and c are the limit points but not the To—limit points of the set {b, c}. Further d is a
To—limit point of {b, c}.

Example 2: Let X = (0, 1) and 7 = {¢, X, and Un = (0, 1-1h), n = 2, 3, 4,. . . }. Then every point of X is a limit point of X. Every point of X~U2 is a To—limit
point of X, but no point of Uz is a To—limit point of X.

2.4. Definition 2.4

A set A together with all its To—limit points will be denoted by To—CcIA.

Note 2: i. Every To—limit point of a set A is a limit point of the set but the converse is not true in general.
ii. In To—space both are same.

Note 3: Ro—axiom is weaker than Ti—axiom. It is independent of the To—axiom. However T1 = Ro+To

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a Ti—space is weakly countable
compact iff it is countable compact.

3.sg-To LIMIT POINT
3.1. Definition 3.01

In X, a point x is said to be a sg-To—limit point of A if each sg-open set containing x contains some point y of A such that sgcl{x} = sgcl{y}, or equivalently;
such that they are topologically distinct with respect to sg-open sets.

Note 5:regular open set = open set = semi-open set = sg-open set we have

r-To—limit point = To—limit point = s-To—limit point = sg-To—limit point

Example 3: Let X ={a, b, c} and t = {¢, {b}, {a, b}, {b, ¢}, X}. For A ={a, b}, a is sg-To—limit point.

3.2. Definition 3.02
A set A together with all its sg-To—limit points is denoted by To-sgcl(A)

3.3. Lemma 3.01

If x is a sg-To—limit point of a set A then x is sg-limit point of A.

3.4. Lemma 3.02

(i) If X is sg-To—space then every sg-To—limit point and every sg-limit point are equivalent.
(ii) If X is r-To—space then every sg-To—limit point and every sg-limit point are equivalent.

3.5. Theorem 3.03

Forx #y eX,

(i) xis asg-To—limit point of {y} iff xgsgcK{y} and yesgcl{x}.

(i)  xis not a sg-To—limit point of {y} iff either xesgcKy}or sgcl{x} = sgcKy}.
(iii) xis not a sg-To—limit point of {y} iff either xesgcKy}or yesgclx}.

3.6. Corollary 3.04

(i) Ifxis asg-To—limit point of {y}, then y cannot be a sg-limit point of {x}.

(i)  1f sgc{x} = sgcl{y}, then neither x is a sg-To—limit point of {y} nory is a sg-To—limit point of {x}.
(iii) If a singleton set A has no sg-To—limit point in X, then sgclA = sgcl{x} for all xe sgc{A}.

3.7. Lemma 3.05

In X, if x is a sg-limit point of a set A, then in each of the following cases x becomes sg-To—limit point of A ({x} # A).
(i)  sgcKx}=sgcl{y} foryeA, x=y.

(i) sgclfx} = {x}

(i) Xis a sg-To—space.

(iv) A~{x}is sg-open

4. sg-To AND sg-Ri AXIOMS, i = 0,1
In view of Lemma 3.6(iii), sg-To—axiom implies the equivalence of the concept of limit point of a set with that of sg-To—limit point of the set. But for the
converse, if xe sgcly} then sgcl{x} # sgcKy} in general, but if X is a sg-To—limit point of {y}, then sgcKx} = sgcKy}.

4.1. Lemma 4.01
In a space X, a limit point x of {y} is a sg-To—limit point of {y} iff sgcl{x} # sgcKy}.
This lemma leads to characterize the equivalence of sg-To—limit point and sg-limit point of a set as sg-To—axiom.

4.2. Theorem 4.02

The following conditions are equivalent:

(i) Xisasg-To space

(i) Every sg-limit point of a set A is a sg-To—limit point of A

(iii)  Every r-limit point of a singleton set {x} is a sg-To—limit point of {x}

(iv) Foranyx,yinX, x#y if xe sgcKy}, then x is a sg-To—limit point of {y}

Note 6: In a sg-To—space X if every point of X is a r-limit point of X, then every point of X is sg-To—limit point of X. But a space X in which each point is a
sg-To—limit point of X is not necessarily a sg-To—space

4.3. Theorem 4.03

The following conditions are equivalent:

(i) Xisasg-Ro space

(i) Foranyx,yin X, if xe sgcl{y}, then x is not a sg-Te—limit point of {y}
(i) A point sg-closure set has no sg-To—limit point in X
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(iv) A singleton set has no sg-To—limit point in X.

4.4. Theorem 4.04

In a sg-Ro space X, a point x is sg-To—limit point of A iff every sg-open set containing x contains infinitely many points of A with each of which x is
topologically distinct

4.5. Theorem 4.05

X is sg-Ro space iff a set A of the form A = U sgcl{Xii=1tn} @ finite union of point closure sets has no sg-To—limit point.
If sg-Ro space is replaced by rRo space in the above theorem, we have the following corollaries:

4.6. Corollary 4.06

The following conditions are equivalent:

(i) Xisar-Rospace

(i) Foranyx,yin X, if xe sgcl{y}, then x is not a sg-To—limit point of {y}
(i) A point sg-closure set has no sg-To—limit point in X

(iv) A singleton set has no sg-To—limit point in X.

4.7. Corollary 4.07

In an rRo—space X,

(i) Ifapointx is rTo—limit point of a set then every sg-open set containing x contains infinitely many points

of A with each of which x is topologically distinct.

(i) If a point x is sg-To—limit point of a set then every sg-open set containing x contains infinitely many points of A with each of which x is topologically
distinct.

(i) 1f A=u sgcl{xi i=1tn} a finite union of point closure sets has no sg-To—limit point.

(iv) If X =u sgcKxii=1ton} then X has no sg-To—limit point.

Various characteristic properties of sg-To—limit points studied so far is enlisted in the following theorem.

4.8. Theorem 4.08

In a sg-Ro—space, we have the following:

(i) A singleton set has no sg-To—limit point in X.

(i) A finite set has no sg-To—limit point in X.

(iii) A point sg-closure has no set sg-To—limit point in X

(iv) A finite union point sg-closure sets have no set sg-To—limit point in X.

(v) Forx, ye X, xeTo—sgcl{y}iff x = y.

(vi) Forany x, ye X, x #y iff neither x is sg-To—limit point of {y}nor y is sg-Te—limit point of {x}
(vii) Foranyx, ye X, x #y iff To— sgcx} nTo— sgcKy} = ¢.

(viii) Any point xeX is a sg-To—limit point of a set A in X iff every sg-open set containing x contains infinitely many points of A with each which x is
topologically distinct.

4.9. Theorem 4.09
X is sg-Ru iff for any sg-open set U in X and points x, y such that xeX~U, yeU, there exists a sg-open set V in X such that yeVcU, xgV.

4.10. Lemma 4.10
In sg-Ri1 space X, if x is a sg-Te—limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that VcU, x¢
sgcl(V).

4.11. Lemma 4.11
In a sg- regular space X, if x is a sg-To—limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that
sgcl(V)cU, xe sgcl(V).

4.12. Corollary 4.12

In a regular space X,

(i) If xis a sg-To-limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V)cU, xe sgcl(V).
(i) If x is a To—limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V)cU, x¢ sgcl(V).

4.13. Theorem 4.13

If X'is a sg-compact sg-Ri-space, then X is a Baire Space.

Proof: Let {An} be a countable collection of sg-closed sets of X, each An having empty interior in X. Take A1, since A1 has empty interior, A1 does not
contain any sg-open set say Uo. Therefore we can choose a point yeUo such that ygAa. For X is sg-regular, and ye(X~A1)nUo, a sg-open set, we can find
a sg-open set Uz in X such that yeUs, sgcl(U1) <(X~A1)nUo. Hence U1 is a non empty sg-open set in X such that sgcl(U1)cUo and sgcl(U1)nA1 = ¢.
Continuing this process, in general, for given non empty sg-open set Un.1, we can choose a point of Un -1 which is not in the sg-closed set Anand a sg-open
set Un containing this point such that sgcl(Un) cUn-1 and sgcl(Un)nAn = ¢. Thus we get a sequence of nested non empty sg-closed sets which satisfies the
finite intersection property. Therefore N sgcl(Un) # ¢. Then some xen sgcl(Un) which in turn implies that XxeUn.1 as sgcl(Un)cUn-1 and x¢An for each n.

4.14. Corollary 4.14

If X is a compact sg-Ri-space, then X is a Baire Space.
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4.15. Corollary 4.15

Let X be a sg-compact sg-Ri-space. If {An} is a countable collection of sg-closed sets in X, each An having non-empty sg-interior in X, then there is a point
of X which is not in any of the An.

4.16. Corollary 4.16

Let X be a sg-compact Ri-space. If {An} is a countable collection of sg-closed sets in X, each An having non-empty sg- interior in X, then there is a point of
X which is not in any of the An.
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4.17. Theorem 4.17

Let X be a non empty compact sg-Ri-space. If every point of X is a sg-To—limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a sg-To-limit point of X, X must be infinite. If X is countable, we construct a sequence of sg- open sets {Vn}
in X as follows:

Let X = V4, then for x1 is a sg-To-limit point of X, we can choose a non empty sg-open set Vzin X such that V2 cVi and x1¢ sgclVa. Next for x2 and non
empty sg-open set V2, we can choose a non empty sg-open set Vzin X such that Va cV2 and x2¢ sgclVs. Continuing this process for each xn and a non
empty sg-open set Vi, we can choose a non empty sg-open set Vn+1in X such that Va1 cVnand xng sgciVasi.

Now consider the nested sequence of sg-closed sets sgclV1 o sgclVz o sgelVs o......... >sgclVao. .. Since X is sg-compact and {sgclVn} the sequence
of sg-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that xe sgclVn. Further xeX and xeVu,
which is not equal to any of the points of X. Hence X is uncountable.

4.18. Corollary 4.18

Let X be a non empty sg-compact sg-Ri-space. If every point of X is a sg-To—limit point of X then X is uncountable

5. sg—To-IDENTIFICATION SPACES AND sg—SEPARATION AXIOMS

5.1. Definition 5.01
Let (X, 7) be a topological space and let R be the equivalence relation on X defined by xRy iff sgc{x} = sgcly}

5.2. Problem 5.02

Show that xRy iff sgcl{x} = sgcl{y} is an equivalence relation

5.3. Definition 5.03

The space (Xo, Q(X0)) is called the sg-To—identification space of (X, z), where Xo is the set of equivalence classes of R and Q(Xo) is the decomposition
topology on Xo.

Let Px: (X,7)— (Xo, Q(Xo)) denote the natural map

5.4. Lemma 5.04
If xeX and A c X, then xe sgclA iff every sg-open set containing x intersects A.

5.5. Theorem 5.05

The natural map Px:(X,t)— (Xo, Q(X0)) is closed, open and Px ~1(Px(0)) = O for all 0ePO(X,t) and (Xo, Q(Xo)) is sg-To

Proof: Let Oe PO(X,7) and let Ce Px(O). Then there exists xeO such that Px(x) = C. If yeC, then sgcl{y} = sgcKx}, which, by lemma, implies yO. Since
7 < PO(X, 1), then Px ~(Px(U)) = U for all Ue 7, which implies Px is closed and open.

Let G, HeXo such that G = H; let xeG and yeH. Then sgci{x} = sgcly}, which implies xzsgcl{y} or yzsgcK{x}, say xgsgcKy}. Since Px is continuous and
open, then GeA = Px{X~sgcKy}}2PO(Xo, Q(Xo)) and HzA

5.6. Theorem 5.06

The following are equivalent:

(i) X is sgRo (i) Xo = {sgcl{x}: xeX} and (iii) (Xo, Q(X0)) is sgT1

Proof: (i) = (ii) Let xeCeXo. If yeC, then yesgcly} = sgcKx}, which implies Cesgcl{x}. If yesgcKx}, then xesgcl{y}, since, otherwise,
xeX~sgcly}ePO(X,t) which implies sgcl{x}cX~sgcly}, which is a contradiction. Thus, if yesgcK{x}, then xesgcKy}, which implies sgclly} = sgcl{x} and
yeC. Hence Xo = {sgcl{x}: xe X}

(il)=(iii) Let A = BeXo. Then there exists x, yeX such that A = sgci{x}; B = sgcl{y}, and sgcl{x}nsgcl{y} = ¢. Then AeC = Px (X~sgcl{y}) e PO(Xo, Q(Xo0)) and
BeC. Thus (Xo, Q(Xo)) is sg-T1

(ii) = (i) Let xeUeSGO(X). Let ygU and Cx, Cy €Xo containing x and y respectively. Then x¢ sgcKy}, which implies Cx # Cyand there exists sg-open set A
such that CxeA and CygA. Since Pxis continuous and open, then yeB = Px™}(A)e xe SGO(X) and x#B, which implies y¢sgcl{x}. Thus sgci{x}c U. This is
true for all sgcl{x} implies nsgcl{x}c U. Hence X is sg-Ro

5.7. Theorem 5.07
(X, ) is sg-Ruiff (Xo, Q(X0)) is sg-T2
The proof is straight forward using theorems 5.05 and 5.06 and is omitted

5.8. Theorem 5.08

X is sg-Ti; i = 0,1,2. iff there exists a sg-continuous, almost—open, 1-1 function from (X, t) into a sg-Ti space ; i =0,1,2. respectively.

5.9. Theorem 5.09
Iff:(X,t )= (Y, o) is sg-continuous, sg-open, and X, yeX such that sgc{x} = sgcl{y}, then sgcl{f(x)} = sgcKf(y)}.

5.10. Theorem 5.10

The following are equivalent

i) (X, t)issg-To

(if) Elements of Xo are singleton sets and

(iii)There exists a sg-continuous, sg-open, 1-1 functionf: (X, t )— (Y, o), where (Y, o) is sg-To

Proof: (i) is equivalent to (ii) and (i) = (iii) are straight forward and is omitted.

(iii) = (i) Letx, yeXsuch that f(x) = f(y), which implies sgcl{f(x)} # sgcl{f(y)}. Then by theorem 5.09, sgcl{x} # sgcy}. Hence (X, 7) is sg-To

5.11. Corollary 5.11
A space (X, t)issg-Ti; i=12iff (X, t)issg-Ti—1; i=1,2, respectively, and there exists a sg-continuous , sg-open, 1-1 function f: (X, t ) into a sg-To
space.

5.12. Definition 5.04
f is point-sg-closure 1-1 iff for x, yeX such that sgcl{x} # sgcl{y}, sgcl{f(x)} # sgcl{f(y)}.
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5.13. Theorem 5.12

@If f: (X, T)— (Y, o) is point— sg-closure 1-1 and (X, t ) is sg-To, then fis 1-1

@iIf f: (X, )= (Y, o), where (X, t )and (Y, o) are sg-To then f is point— sg-closure 1-1 iff f is 1-1

The following result can be obtained by combining results for sg-To— identification spaces, sg-induced functions and sg-Ti spaces; i=1,2.

5.14. Theorem 5.13

Xis sg-Ri; i= 0,1 iff there exists a sg-continuous , aimost—open point— sg-closure 1-1 function f: (X, t ) into a sg-Ri space; i= 0,1 respectively.

6. sg-Normal; Almost sg-normal and Mildly sg-normal spaces
6.1. Definition 6.1

A space X is said to be sg-normal if for any pair of disjoint closed sets F1 and F2 , there exist disjoint sg-open sets U and V such that F1 cU and F2 < V.
Example 4: Let X ={a, b, c} and t = {¢, {a}, {b, c}, X}. Then X is sg-normal.

Example 5: Let X = {a, b, c, d} with © = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is sg-normal, normal and almost normal.

We have the following characterization of sg-normality.

6.2. Theorem 6.1

For a space X the following are equivalent:

(i) Xis sg-normal.

(ii) For every pair of open sets U and V whose union is X, there exist sg-closed sets A and B such that AcU, B <V and ALB = X.

(iii) For every closed set F and every open set G containing F, there exists a sg-open set U such that FcUcsgcel(U)cG.

Proof: (i)=(ii): Let U and V be a pair of open sets in a sg-normal space X such that X = UWV. Then X-U, X-V are disjoint closed sets. Since X is sg-
normal there exist disjoint sg-open sets Urand Vi such that  X-UcUsz and X-VcVi. Let A = X-U1, B = X-V1. Then A and B are sg-closed sets such that
AcU, BcV and ALB = X.

(i) =(iii): Let F be a closed set and G be an open set containing F. Then X—F and G are open sets whose union is X. Then by (b), there exist sg-closed
sets W1 and W2 such that W1 < X—-F and W2 c G and  Wi1UW2 = X. Then Fc X-W1, X—G < X-W2 and (X-W1)(X-W2) = ¢. Let U = X-W1 and V= X-Wa.
Then U and V are disjoint sg-open sets such that FcUcX-VcG. As X-V is sg-closed set, we have sgcl(U) X-V and FcUcsgcl(U)cG.

(i) = (i): Let F1 and F2 be any two disjoint closed sets of X. Put G = X—F2, then F1G = ¢. F1.cG where G is an open set. Then by (c), there exists a sg-
open set U of X such that F1 cU < sgcl(U) <G. It follows that F2 < X—sgcl(U) =V, say, then V is sg-open and UV = ¢. Hence F1 and F2 are separated by
sg-open sets U and V. Therefore X is sg-normal.

6.3. Theorem 6.2

A regular open subspace of a sg-normal space is sg-normal.

Example 6: Let X = {a, b, c, d} with T = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is sg-normal and sg-regular.
However we observe that every sg-normal sg-Ro space is sg-regular.

6.4. Definition 6.2

A function f:X—Y is said to be almost—sg-irresolute if for each x in X and each sg-neighborhood V of f(x), sgcl(f ~(V)) is a sg-neighborhood of x.
Clearly every sg-irresolute map is almost sg-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

6.5. Lemma 6.1
f is almost sg-irresolute iff f1(V) < sg-int(sgcl(f1(V)))) for every VeSGO(Y).

6.6. Lemma 6.2

f is almost sg-irresolute iff f(sgcl(U)) < sgcl(f(U)) for every Ue SGO(X).

Proof: Let Ue SGO(X).Suppose y¢ sgcl(f(U)). Then there exists Ve sg O(y) such that V~f(U) = ¢. Hence f 1(V)nU= ¢. Since UeSGO(X), we have sg-
int(sgcl(f1(V))) m sgcl(U) = ¢. By lemma 6.1, f (V) sgcl(U) = ¢ and hence Vnf(sgcl(U)) = ¢. This implies that yef(sgcl(V)).

Conversely, if VeSGO(Y), then W = X- sgcl(f1(V)))e sgO(X). By hypothesis, f(sgcl(W))c sgcl (f(W))) and hence X- sg-int(sgcl(f1(V))) =
sgcl(W)cfi(sgel(f(W)))=f(sgel[f(X-F2(V)))=f “[sgcl(Y-V)] = f1(Y-V) = X-f(V). Therefore, (V) sg-int(sgcl(f1(V))). By lemma 6.1, f is almost
sg-irresolute.

6.7. Theorem 6.3

If f:X—Y is M-sg-open continuous almost sg-irresolute, X is sg-normal, then Y is sg-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f(A) is closed and f*(B) is an open set of X such that f*
(A) c fY(B). As X is sg-normal, there exists a sg-open set U in X such that f1(A) c U < sgcl(U)c £1(B). Then f(f1(A))c f(U) c f(sgcl(U)) < f(f*(B)). Since f
is M-sg-open almost sg-irresolute surjection, we obtain Ac f(U) < sgcl(f(U)) < B. Then again by Theorem 6.1 the space Y is sg-normal.

6.8. Lemma 6.3
A mapping f is M-sg-closed if and only if for each subset B in Y and for each sg-open set U in X containing f(B), there exists a sg-open set V containing
B such that f3(V)cU.

6.9. Theorem 6.4

If f:X—Y is M-sg-closed continuous, X is sg-normal space, then Y is sg-normal.
Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

6.10. Theorem 6.5

If f is an M-sg-closed map from a weakly Hausdorff sg-normal space X onto a space Y such that f1(y) is S-closed relative to X for each yeY , then Y is
sg-Te.

Proof: Let y1 = y2€Y. Since X is weakly Hausdorff, f -}(y1) and f -1(y2) are disjoint closed subsets of X by lemma 2.2 [9]. As X is sg-normal, there exist
disjoint Vi e SGO(X) such that f -}(y;) = V;, for i = 1,2. Since f is M-sg-closed, there exist disjoint Uie SGO(Y, yi) and f-1(Ui) c Vifori=1,2. Hence Y is sg-Ta.
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(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint sg-open sets U, V such that AcU and BcV;
(b) If X is normal then for any closed set A and any open set V containing A, there exists an sg-open set U of X such that AcUcsgcl(U) cV.

6.12. Definition 6.2

X is said to be almost sg-normal if for each closed set A and each regular closed set B such that AnB = ¢, there exist disjoint sg-open sets U and V such
that AcU and BcV.

Clearly, every sg-normal space is almost sg-normal, but not conversely in general.

6.13. Theorem 6.7

For a space X the following statements are equivalent:

(i) Xis almost sg-normal

(ii) For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist sg-closed sets G and H such that
GcU ,HceV and GUH = X.

(iii) For every closed set A and every regular open set B containing A, there is a sg-open set V such that AcVcsgcel(V)cB.

Proof: (i)=(ii) Let U be an open set and V be a regular open set in an almost sg-normal space X such that UuV = X. Then (X-U) is closed set and (X-V) is
regular closed set with (X-U)n(X-V) = ¢. By almost sg-normality of X, there exist disjoint sg-open sets U1 and V1 such that X-U c Us and X-V < V1. Let G =
X- Uz and H = X-V1. Then G and H are sg-closed sets such that GcU, HcV and GUH = X.

(i) = (iii) and (iii) = (i) are obvious.

One can prove that almost sg-normality is also regular open hereditary.

Almost sg-normality does not imply almost sg-regularity in general. However, we observe that every almost sg-normal sg-Ro space is almost sg-regular.

6.14. Theorem 6.8

Every almost regular, sg-compact space X is almost sg-normal.

Recall that a function f : X— Y is called rc-continuous if inverse image of regular closed set is regular closed.
Now, we state the invariance of almost sg-normality in the following.

6.15. Theorem 6.9
If f is continuous M-sg-open rc-continuous and almost sg-irresolute surjection from an almost sg-normal space X onto a space Y, then Y is almost sg-
normal.

6.16. Definition 6.3

A space X is said to be mildly sg-normal if for every pair of disjoint regular closed sets F1and F2 of X, there exist disjoint sg-open sets U and V such that
FicUandF, c V.

Example 7: Let X = {a, b, c, d} with T = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is Mildly sg-normal.

We have the following characterization of mild sg-normality.

6.17. Theorem 6.10

For a space X the following are equivalent.

(i) Xis mildly sg-normal.

(ii) For every pair of regular open sets U and V whose union is X, there exist sg-closed sets G and H such that G c U, H c V and GUH = X.
(iii) For any regular closed set A and every regular open set B containing A, there exists a sg-open set U such that AcUcsgcl(U)cB.

(iv) For every pair of disjoint regular closed sets, there exist sg-open sets U and V such that AcU, BcV and sgcl(U)n sgcl(V) = ¢.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild sg-normality is regular open hereditary.

6.18. Definition 6.4

A space X is weakly sg-regular if for each point x and a regular open set U containing {x}, there is a sg-open set V such that xeV c clV c U.
Example 8: Let X ={a, b, c} and t = {¢, {b},{a, b},{b, c}, X}. Then X is weakly sg-regular.
Example 9: Let X ={a, b, ¢} and t = {¢, {a},{b},{a, b}, X}. Then X is not weakly sg-regular.

6.19. Theorem 6.11

If f: X = Y is an M-sg-open rc-continuous and almost sg-irresolute function from a mildly sg-normal space X onto a space Y, then Y is mildly sg-normal.
Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, f-(A) is a regular closed set contained in the
regular open set f1(B). Since X is mildly sg-normal, there exists a sg-open set V such that f1(A) cVc sgcl(V) < f -1(B) by Theorem 6.10. As f is M-sg-open
and almost sg-irresolute surjection, f(V)e SGO(Y) and Ac f(V) < sgcl(f(V))c B. Hence Y is mildly sg-normal.

6.20. Theorem 6.12

If f:X—Y is rc-continuous, M-sg-closed map and X is mildly sg-normal space, then Y is mildly sg-normal.

7. sg-US SPACES
7.1. Definition 7.1

A sequence <x»> is said to be sg-converges to a point x of X, written as <xn> —%9 x if <x»> is eventually in every sg-open set containing Xx.
Clearly, if a sequence <xn> r-converges to a point x of X, then <xn> sg-converges to x.

7.2. Definition 7.2

X is said to be sg-US if every sequence <x»> in X sg-converges to a unique point.

7.3. Definition 7.3

A set F is sequentially sg-closed if every sequence in F sg-converges to a pointin F.

7.4. Definition 7.4

A subset G of a space X is said to be sequentially sg-compact if every sequence in G has a subsequence which sg-converges to a point in G.
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7.5. Definition 7.5
A point y is a sg-cluster point of sequence <xn> iff <xn> is frequently in every sg-open set containing x. The set of all sg-cluster points of <x»> will be
denoted by sg-cl(xn).

7.6. Definition 7.6

A point y is sg-side point of a sequence <xn> if y is a sg-cluster point of <xn> but no subsequence of <xn> sg-converges to y.

7.7. Definition 7.7

A space X is said to be

(i) sg-S1ifitis sg-US and every sequence <xn> sg-converges with subsequence of <x»> sg-side points.
(i) sg-Sz if it is sg-US and every sequence <x»> in X sg-converges which has no sg-side point.

Using sequentially continuous functions, we define sequentially sg-continuous functions.

7.8. Definition 7.8

A function f is said to be sequentially sg-continuous at x e X if f(xn) —>% f(x) whenever <xn> —%9 x. If f is sequentially sg-continuous at all xeX, then f is
said to be sequentially sg-continuous.

7.9. Theorem 7.1

We have the following:

(i) Every sg-T2 space is sg-US.

(i) Every sg-US space is sg-Ti.

(iii) Xis sg-US iff the diagonal set is a sequentially sg-closed subset of X x X.
(iv) Xis sg-Tziff it is both sg-R1 and sg-US.

(v) Every regular open subset of a sg-US space is sg-US.

(vi) Product of arbitrary family of sg-US spaces is sg-US.

(vii) Every sg-S2 space is sg-S1 and Every sg-Si1 space is sg-US.

7.10. Theorem 7.2

In a sg-US space every sequentially sg-compact set is sequentially sg-closed.

Proof: Let X be sg-US space. LetY be a sequentially sg-compact subset of X. Let <xn> be a sequence in Y. Suppose that <xn> sg-converges to a point
in X-Y. Let <xnp> be subsequence of <x»> that sg-converges to a point y € Y since Y is sequentially sg-compact. Also, let a subsequence <xnp> Of <Xn>
sg-converge to x € X-Y. Since <xnp> is a sequence in the sg-US space X, x =y. Thus, Y is sequentially sg-closed set.

7.11. Theorem 7.3

If f and g are sequentially sg-continuous and Y is sg-US, then the set A = {x | f(x) = g(x)} is sequentially sg-closed.

Proof: Let Y be sg-US. If there is a sequence <x»> in A sg-converging to x € X. Since f and g are sequentially sg-continuous, f(xn) —%9 f(x) and g(xn) —%
9(x). Hence f(x) = g(x) and xeA. Therefore, A is sequentially sg-closed.

8. SEQUENTIALLY SUB-sg-CONTINUITY

In this section we introduce and study the concepts of sequentially sub-sg-continuity, sequentially nearly sg-continuity and sequentially sg-compact
preserving functions and study their relations and the property of sg-US spaces.

8.1. Definition 8.1

A function f is said to be

(i) sequentially nearly sg-continuous if for each point xeX and each sequence <x»> —% x in X, there exists a subsequence <xn> of <x»> such that
<f(Xnk)>—> 9 f(X).

(ii) sequentially sub-sg-continuous if for each point xeX and each sequence <xn> —% X in X, there exists a subsequence <xnx> of <xn> and a point yeY
such that <f(xnk)> —>%9y.

(iii) sequentially sg-compact preserving if f(K) is sequentially sg-compact in Y for every sequentially sg-compact set K of X.

8.2. Lemma 8.1

Every function f is sequentially sub-sg-continuous if Y is a sequentially sg-compact.

Proof: Let <xn> —% x in X. Since Y is sequentially sg-compact, there exists a subsequence {f(xn)} of {f(xn)} sg-converging to a point yeY. Hence f is
sequentially sub-sg-continuous.

8.3. Theorem 8.1

Every sequentially nearly sg-continuous function is sequentially sg-compact preserving.

Proof: Assume f is sequentially nearly sg-continuous and K any sequentially sg-compact subset of X. Let <yn> be any sequence in f (K). Then for each
positive integer n, there exists a point xn € K such that f(xn) = yn. Since <xn> is a sequence in the sequentially sg-compact set K, there exists a
subsequence <xnk> of <xn> Sg-converging to a point x € K. By hypothesis, f is sequentially nearly sg-continuous and hence there exists a subsequence
<x;> of <xnk> such that f(x;))— %9 f(x). Thus, there exists a subsequence <y;> of <yn> sg-converging to f(x)ef(K). This shows that f(K) is sequentially sg-
compact setin'Y.

8.4. Theorem 8.2

Every sequentially s-continuous function is sequentially sg-continuous.

Proof: Let f be a sequentially s-continuous and <xn> —° xeX. Then <xn> —° x. Since f is sequentially s-continuous, f(xn)—*f(x). But we know that <xp>—*
x implies <xn> —°9 x and hence f(xn)— ¢ f(x) implies f is sequentially sg-continuous.

8.5. Theorem 8.3

Every sequentially sg-compact preserving function is sequentially sub-sg-continuous.

Proof: Suppose f is a sequentially sg-compact preserving function. Let x be any point of X and <x»> any sequence in X sg-converging to x. We shall
denote the set {xn| n=1,2,3, ...} by A and K = A U {x}. Then K is sequentially sg-compact since (xn) -9 x. By hypothesis, f is sequentially sg-compact
preserving and hence f(K) is a sequentially sg-compact set of Y. Since {f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of {f(xn)} sg-
converging to a point yef(K). This implies that f is sequentially sub-sg-continuous.
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8.6. Theorem 8.4

A function f: X— Y is sequentially sg-compact preserving iff fix: K — f(K) is sequentially sub-sg-continuous for each sequentially sg-compact subset K of X.
Proof: Suppose f is a sequentially sg-compact preserving function. Then f(K) is sequentially sg-compact set in Y for each sequentially sg-compact set K
of X. Therefore, by Lemma 8.1 above, fx: K— f(K) is sequentially sg-continuous function.

Conversely, let K be any sequentially sg-compact set of X. Let <yn> be any sequence in f(K). Then for each positive integer n, there exists a point xneK
such that f(xn) = yn. Since <xn> is a sequence in the sequentially sg-compact set K, there exists a subsequence <xn> of <xn> sg-converging to a point x
K. By hypothesis, f x: K— f(K) is sequentially sub-sg-continuous and hence there exists a subsequence <yn> of <yn> sg-converging to a point ye
f(K).This implies that f(K) is sequentially sg-compact set in Y. Thus, f is sequentially sg-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-sg-continuous function to be sequentially sg-compact preserving.

8.7. Corollary 8.1

If f is sequentially sub-sg-continuous and f(K) is sequentially sg-closed set in Y for each sequentially sg-compact set K of X, then f is sequentially sg-
compact preserving function.
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