Indian Journal of

Engineering

On sq-Separation Axioms

Balasubramanian S1, Sandhya C2

- 1. Department of Mathematics, Govt. Arts College (A), Karur 639 005, Tamilnadu, India, E-mail: mani55682@rediffmail.com
- 2. Department of Mathematics, C.S.R. Sarma College, Ongole 523 001, Andhraparadesh, India, E-mail: sandhya_karavadi@yahoo.co.uk

Received 17 September; accepted 03 October; published online 01 November; printed 16 November 2012

ABSTRACT

In this paper we define almost sg-normality and mild sg-normality, continue the study of further properties of sg-normality. We show that these three axioms are regular open hereditary. Also define the class of almost sg-irresolute mappings and show that sg-normality is invariant under almost sgirresolute M-sq-open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Key words and Phrases: sg-open, almost normal, midly normal, M-sg-closed, M-sg-open, rc-continuous.

1. INTRODUCTION

n 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T₁ and T₂ spaces, namely, S₁ and S₂, Next, in 1982, S.P. Arva et all have introduced and studied the concept of semi-US spaces and also they made study of sconvergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired with these we introduce sq-Normal Almost- sq-Normal, Mildly- sq-Normal, sq-US, sq-S₁ and sq-S₂. Also we examine sq-convergence, sequentially sqcompact, sequentially sg-continuous maps, and sequentially sub sg-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

2. PRELIMINARIES

2.1. Definition 2.1

 $A \subset X$ is called (i) g-closed if cl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) sg-closed if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.

2.2. Definition 2.2

A space X is said to be

(i) T_1 (T_2) if for any $x \neq y$ in X, there exist (disjoint) open sets U; V in X such that $x \in U$ and $y \in V$.

(ii) Weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F1 and F2, there exist disjoint open sets U and V such that F1 = U and $F_2 \subset V$.

(iv) Almost normal if for each closed set A and each regular closed set B such that $A \cap B = \emptyset$, there exist disjoint open sets U and V such that $A \subset U$ and

(v) Weakly regular if for each pair consisting of a regular closed set A and a point x such that $A \cap \{x\} = \emptyset$, there exist disjoint open sets U and V such that x ∈ U and A⊂V.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.

(vii) R₀ if for any point x and a closed set F with x∉F in X, there exists a open set G containing F but not x.

(viii) R_1 iff for $x, y \in X$ with $cl\{x\} \neq cl\{y\}$, there exist disjoint open sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges. (x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.

(xi) pre-S₁ if it is pre-US and every sequence $\langle x_n \rangle$ pre-converges with subsequence of $\langle x_n \rangle$ pre-side points.

(xii) pre-S₂ if it is pre-US and every sequence <x_n> in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X.

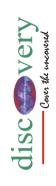
2.3. Definition 2.3

Let $A \subset X$. Then a point x is said to be a

- (i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.
- (ii) T₀-limit point of A if each open set containing x contains some point y of A such that cl{x} ≠ cl{y}, or equivalently, such that they are topologically

Balasubramanian et al. On sq-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 55-62,



(iii) pre-T₀—limit point of A if each open set containing x contains some point y of A such that pcl{x} ≠ pcl{y}, or equivalently, such that they are topologically distinct

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.

Example 1: Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T_0 -limit points of the set $\{b, c\}$. Further d is a T_0 -limit point of $\{b, c\}$.

Example 2: Let X = (0, 1) and $\tau = \{\phi, X, \text{ and } U_n = (0, 1-1/n), n = 2, 3, 4, ... \}$. Then every point of X is a limit point of X. Every point of X-U₂ is a T₀-limit point of X, but no point of U₂ is a T₀-limit point of X.

2.4. Definition 2.4

A set A together with all its T₀-limit points will be denoted by T₀-clA.

Note 2: i. Every T₀-limit point of a set *A* is a limit point of the set but the converse is not true in general.

ii. In T₀-space both are same.

Note 3: R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T₁-space is weakly countable compact iff it is countable compact.

3. sg-T₀ LIMIT POINT

3.1. Definition 3.01

In X, a point x is said to be a $sg-T_0$ -limit point of A if each sg-pen set containing x contains some point y of A such that $sgc/(x) \neq sgc/(y)$, or equivalently; such that they are topologically distinct with respect to sg-pen sets.

Note 5:regular open set \Rightarrow open set \Rightarrow semi-open set \Rightarrow sg-open set we have

 $r\text{-}T_0\text{--limit point} \Rightarrow T_0\text{--limit point} \Rightarrow s\text{-}T_0\text{--limit point} \Rightarrow sg\text{-}T_0\text{--limit point}$

Example 3: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. For $A = \{a, b\}$, a is $sg-T_0$ -limit point.

3.2. **Definition 3.02**

A set A together with all its sg-T₀-limit points is denoted by T₀-sgcl(A)

3.3. Lemma 3.01

If x is a sg-T₀-limit point of a set A then x is sg-limit point of A.

3.4. Lemma 3.02

- (i) If X is $sg-T_0$ —space then every $sg-T_0$ —limit point and every sg-limit point are equivalent.
- (ii) If X is r-T₀-space then every sg-T₀-limit point and every sg-limit point are equivalent.

3.5. Theorem 3.03

For $x \neq y \in X$,

- (i) x is a sg-T₀-limit point of $\{y\}$ iff $x \notin sgcl\{y\}$ and $y \in sgcl\{x\}$.
- (ii) $x \text{ is not a sg-T}_0\text{-limit point of } \{y\} \text{ iff either } x \in \text{sgcl}\{y\} \text{ or } \text{sgcl}\{x\} = \text{sgcl}\{y\}.$
- (iii) x is not a sg-T₀-limit point of $\{y\}$ iff either $x \in sgcl\{y\}$ or $y \in sgcl\{x\}$.

3.6. Corollary 3.04

- (i) If x is a sg- T_0 -limit point of $\{y\}$, then y cannot be a sg-limit point of $\{x\}$.
- (ii) If $sgcl\{x\} = sgcl\{y\}$, then neither x is a $sg-T_0$ -limit point of $\{y\}$ nor y is a $sg-T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no sg-T₀-limit point in X, then sgclA = sgcl{x} for all $x \in \text{sgcl}\{A\}$.

3.7. Lemma 3.05

In X, if x is a sg-limit point of a set A, then in each of the following cases x becomes $sg-T_0$ -limit point of A $(\{x\} \neq A)$.

- (i) $sgcl\{x\} \neq sgcl\{y\} \text{ for } y \in A, x \neq y.$
- (ii) $\operatorname{sgcl}\{x\} = \{x\}$
- (iii) X is a sg-T₀–space.
- (iv) $A \sim \{x\}$ is sg-open

4. $sq-T_0$ AND $sq-R_i$ AXIOMS, i = 0.1

In view of Lemma 3.6(iii), $sg-T_0$ —axiom implies the equivalence of the concept of limit point of a set with that of $sg-T_0$ —limit point of the set. But for the converse, if $x \in sgcl(y)$ then $sgcl(x) \neq sgcl(y)$ in general, but if x is a $sg-T_0$ —limit point of $\{y\}$, then sgcl(x) = sgcl(y).

4.1. Lemma 4.01

In a space X, a limit point x of $\{y\}$ is a $sg-T_0$ -limit point of $\{y\}$ iff $sgcl\{x\} \neq sgcl\{y\}$.

This lemma leads to characterize the equivalence of sg-T₀-limit point and sg-limit point of a set as sg-T₀-axiom.

4.2. Theorem 4.02

The following conditions are equivalent:

- (i) X is a sg-T₀ space
- (ii) Every sg-limit point of a set A is a sg-T₀-limit point of A
- (iii) Every r-limit point of a singleton set {x} is a sg-T₀-limit point of {x}
- (iv) For any x, y in X, $x \neq y$ if $x \in sgcl\{y\}$, then x is a sg-T₀-limit point of $\{y\}$

Note 6: In a sg- T_0 -space X if every point of X is a r-limit point of X, then every point of X is sg- T_0 -limit point of X. But a space X in which each point is a sg- T_0 -limit point of X is not necessarily a sg- T_0 -space

4.3. Theorem 4.03

The following conditions are equivalent:

- (i) X is a sg-R₀ space
- (ii) For any x, y in X, if $x \in sgcl\{y\}$, then x is not a $sg-T_0$ -limit point of $\{y\}$
- (iii) A point sg-closure set has no sg-T $_0$ -limit point in X

Balasubramanian et al.

On sq-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 55-62,

(iv) A singleton set has no sg-T₀-limit point in X.

4.4. Theorem 4.04

In a sg-R₀ space X, a point x is sg-T₀-limit point of A iff every sg-open set containing x contains infinitely many points of A with each of which x is topologically distinct

4.5. Theorem 4.05

X is sg-R₀ space iff a set A of the form $A = \bigcup sgcl(x_{i,i=1 \text{ to } n})$ a finite union of point closure sets has no sg-T₀-limit point.

If sg-R₀ space is replaced by rR₀ space in the above theorem, we have the following corollaries:

4.6. Corollary 4.06

The following conditions are equivalent:

- X is a r-R₀ space
- For any x, y in X, if $x \in sgcl\{y\}$, then x is not a $sg-T_0$ -limit point of $\{y\}$
- (iii) A point sg-closure set has no sg-T₀-limit point in X
- (iv) A singleton set has no sg-T₀-limit point in X.

4.7. Corollary 4.07

In an rR₀-space X,

- If a point x is rT₀-limit point of a set then every sg-open set containing x contains infinitely many points
- of A with each of which x is topologically distinct.
- (ii) If a point x is sg-T₀-limit point of a set then every sg-open set containing x contains infinitely many points of A with each of which x is topologically
- (iii) If $A = \bigcup sgcl\{x_{i, i=1 \text{ to n}}\}\ a$ finite union of point closure sets has no $sg-T_0$ -limit point.
- (iv) If $X = \bigcup sgcl\{x_{i, i=1 \text{ to } n}\}\$ then X has no $sg-T_0$ —limit point.

Various characteristic properties of sg-T₀-limit points studied so far is enlisted in the following theorem.

4.8. Theorem 4.08

In a sg-R₀-space, we have the following:

- A singleton set has no sg-T₀-limit point in X.
- A finite set has no sg-T₀-limit point in X.
- A point sg-closure has no set sg-T₀-limit point in X
- A finite union point sg-closure sets have no set sg-T₀-limit point in X. (iv)
- For $x, y \in X$, $x \in T_0$ $sgcl\{y\}$ iff x = y. (v)
- (vi) For any $x, y \in X$, $x \ne y$ iff neither x is $sg-T_0$ -limit point of $\{y\}$ nor y is $sg-T_0$ -limit point of $\{x\}$
- For any $x, y \in X$, $x \neq y$ iff T_0 $sgcl\{x\} \cap T_0$ $sgcl\{y\} = \phi$.
- (viii) Any point x ∈ X is a sg-T₀-limit point of a set A in X iff every sg-open set containing x contains infinitely many points of A with each which x is topologically distinct.

4.9. Theorem 4.09

X is sg-R₁ iff for any sg-open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a sg-open set V in X such that $y \in V \subset U$, $x \notin V$.

4.10. Lemma 4.10

In sg-R₁ space X, if x is a sg-T₀-limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that V⊂U, x∉ sgcl(V).

4.11. Lemma 4.11

In a sq-regular space X, if x is a sq-T₀-limit point of X, then for any non empty sq-open set U, there exists a non empty sq-open set V such that sgcl(V)⊂U, x∉ sgcl(V).

4.12. Corollary 4.12

In a regular space X,

- (i) If x is a sg-T₀-limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V)_U, x∉ sgcl(V).
- (ii) If x is a T₀-limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V). U, x ∉ sgcl(V).

4.13. Theorem 4.13

If X is a sg-compact sg-R₁-space, then X is a Baire Space.

Proof: Let {An} be a countable collection of sg-closed sets of X, each An having empty interior in X. Take An, since An have empty interior, An does not contain any sg-open set say U_0 . Therefore we can choose a point $y \in U_0$ such that $y \notin A_1$. For X is sg-regular, and $y \in (X \sim A_1) \cap U_0$, a sg-open set, we can find a sg-open set U_1 in X such that $y \in U_1$, $sgcl(U_1) \subset (X \sim A_1) \cap U_0$. Hence U_1 is a non empty sg-open set in X such that $sgcl(U_1) \subset U_0$ and $sgcl(U_1) \cap A_1 = \emptyset$. Continuing this process, in general, for given non empty sg-open set U_{n-1}, we can choose a point of U_{n-1} which is not in the sg-closed set A_n and a sg-open set U_n containing this point such that $sgcI(U_n) \subset U_{n-1}$ and $sgcI(U_n) \cap A_n = \emptyset$. Thus we get a sequence of nested non empty sg-closed sets which satisfies the finite intersection property. Therefore $\cap sgcl(U_n) \neq \emptyset$. Then some $x \in \cap sgcl(U_n)$ which in turn implies that $x \in U_{n-1}$ as $sgcl(U_n) \subset U_{n-1}$ and $x \notin A_n$ for each n.

4.14. Corollary 4.14

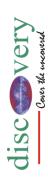
If X is a compact sg-R₁-space, then X is a Baire Space.

4.15. Corollary 4.15

Let X be a sg-compact sg-R₁-space. If {A_n} is a countable collection of sg-closed sets in X, each A_n having non-empty sg-interior in X, then there is a point of X which is not in any of the An.

4.16. Corollary 4.16

Let X be a sg-compact R₁-space. If {A_n} is a countable collection of sg-closed sets in X, each A_n having non-empty sg- interior in X, then there is a point of X which is not in any of the An.



27

4.17. Theorem 4.17

Let X be a non empty compact sq-R₁-space. If every point of X is a sq-T₀-limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a sg-T₀-limit point of X, X must be infinite. If X is countable, we construct a sequence of sg- open sets $\{V_n\}$ in X as follows:

Let $X = V_1$, then for x_1 is a sg- T_0 -limit point of X, we can choose a non empty sg-open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin sgclV_2$. Next for x_2 and non empty sg-open set V_2 , we can choose a non empty sg-open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin sgclV_3$. Continuing this process for each x_n and a non empty sg-open set V_n , we can choose a non empty sg-open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin sgclV_{n+1}$.

Now consider the nested sequence of sg-closed sets $sgcIV_1 \supset sgcIV_2 \supset sgcIV_3 \supset \dots \supset sgcIV_n \supset \dots$ Since X is sg-compact and $\{sgcIV_n\}$ the sequence of sg-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in sgcIV_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

4.18. Corollary 4.18

Let X be a non empty sg-compact sg-R₁-space. If every point of X is a sg-T₀-limit point of X then X is uncountable

5. sg-T₀-IDENTIFICATION SPACES AND sg-SEPARATION AXIOMS

5.1. **Definition 5.01**

Let (X, τ) be a topological space and let \Re be the equivalence relation on X defined by $x\Re y$ iff sgc f(x) = sgc f(y)

5.2. Problem 5.02

Show that $x\Re y$ iff $sgcl\{x\} = sgcl\{y\}$ is an equivalence relation

5.3. Definition 5.03

The space $(X_0, Q(X_0))$ is called the sg-T₀-identification space of (X, τ) , where X_0 is the set of equivalence classes of $\mathfrak R$ and $Q(X_0)$ is the decomposition topology on X_0 .

Let P_X : $(X, \tau) \rightarrow (X_0, Q(X_0))$ denote the natural map

5.4. Lemma 5.04

If $x \in X$ and $A \subset X$, then $x \in \operatorname{sgcl} A$ iff every sg-open set containing x intersects A.

5.5. Theorem 5.05

The natural map $Px:(X,\tau) \to (X_0, Q(X_0))$ is closed, open and $Px^{-1}(Px(O)) = O$ for all $O \in PO(X,\tau)$ and $(X_0, Q(X_0))$ is $sg-T_0$

Proof: Let $O \in PO(X, \tau)$ and let $C \in Px(O)$. Then there exists $x \in O$ such that Px(x) = C. If $y \in C$, then sgc(y) = sgc(x), which, by lemma, implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $Px^{-1}(Px(U)) = U$ for all $U \in \tau$, which implies Px is closed and open.

Let G, $H \in X_0$ such that $G \neq H$; let $x \in G$ and $y \in H$. Then $sgc / \{x\} \neq sgc / \{y\}$, which implies $x \notin sgc / \{y\}$ or $y \notin sgc / \{y\}$, say $x \notin sgc / \{y\}$. Since P_X is continuous and open, then $G \in A = P_X \{X \sim sgc / \{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

5.6. Theorem 5.06

The following are equivalent:

(i) X is sgR0 (ii) $X_0 = \{sgcl\{x\}: x \in X\}$ and (iii) $(X_0, Q(X_0))$ is sgT_1

Proof: (i) \Rightarrow (ii) Let $x \in C \in X_0$. If $y \in C$, then $y \in sgcl\{y\} = sgcl\{x\}$, which implies $C \in sgcl\{x\}$. If $y \in sgcl\{x\}$, then $x \in sgcl\{y\}$, since, otherwise, $x \in X \sim sgcl\{y\} \in PO(X,\tau)$ which implies $sgcl\{y\} \in Sgcl\{y\}$, which is a contradiction. Thus, if $y \in sgcl\{x\}$, then $x \in sgcl\{y\}$, which implies $sgcl\{y\} = sgcl\{y\}$ and $y \in C$. Hence $x_0 = \{sgcl\{x\}: x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then there exists $x, y \in X$ such that $A = sgcI\{x\}$; $B = sgcI\{y\}$, and $sgcI\{y\} = \phi$. Then $A \in C = P_X(X \sim sgcI\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $sg-T_1$

(iii) \Rightarrow (i) Let $x \in U \in SGO(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin sgcI(y)$, which implies $C_x \ne C_y$ and there exists sg-open set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in SGO(X)$ and $x \notin B$, which implies $y \notin sgcI(x)$. Thus $sgcI(x) \subseteq U$. This is true for all sgcI(x) implies $sgcI(x) \subseteq U$. Hence X is $sg.R_0$

5.7. Theorem 5.07

 (X, τ) is sg-R₁ iff $(X_0, Q(X_0))$ is sg-T₂

The proof is straight forward using theorems 5.05 and 5.06 and is omitted

5.8. Theorem 5.08

X is sg-T_i; i = 0,1,2. iff there exists a sg-continuous, almost–open, 1–1 function from (X, τ) into a sg-T_i space; i = 0,1,2. respectively.

5.9. Theorem 5.09

 $If f: (X, \tau) \rightarrow (Y, \sigma) \text{ is sg-continuous, sg-open, and } x, y \in X \text{ such that } sgcl\{x\} = sgcl\{y\}, \text{ then } sgcl\{f(x)\} = sgcl\{f(y)\}.$

5.10. Theorem 5.10

The following are equivalent

- (i) (X, τ) is sg-T₀
- (ii) Elements of X_0 are singleton sets and

(iii) There exists a sg-continuous, sg-open, 1–1 function $f: (X, \tau) \rightarrow (Y, \sigma)$, where (Y, σ) is sg-T₀

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $sgcl\{f(x)\} \neq sgcl\{f(y)\}$. Then by theorem 5.09, $sgcl\{x\} \neq sgcl\{y\}$. Hence (X, τ) is $sg-T_0$

5.11. Corollary 5.11

A space (X, τ) is $sg-T_i$; i = 1,2 iff (X, τ) is $sg-T_{i-1}$; i = 1,2, respectively, and there exists a sg-continuous, sg-open, sg-open,

5.12. Definition 5.04

f is point–sg-closure 1–1 iff for x, $y \in X$ such that $sgcl(x) \neq sgcl(y)$, $sgcl(f(x)) \neq sgcl(f(y))$.

Balasubramanian et al.

On sg-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 55-62,

5.13. Theorem 5.12

(i)If $f: (X, \tau) \rightarrow (Y, \sigma)$ is point– sg-closure 1–1 and (X, τ) is sg-T₀, then f is 1–1

(ii) If $f: (X, \tau) \to (Y, \sigma)$, where (X, τ) and (Y, σ) are sg-T₀ then f is point–sg-closure 1–1 iff f is 1–1

The following result can be obtained by combining results for $sg-T_0$ —identification spaces, sg-induced functions and $sg-T_1$ spaces; i = 1,2.

5.14. Theorem 5.13

X is sg-R_i; i = 0.1 iff there exists a sg-continuous, almost–open point– sg-closure 1–1 function f: (X, τ) into a sg-R_i space; i = 0.1 respectively.

6. sg-Normal; Almost sg-normal and Mildly sg-normal spaces

6.1. Definition 6.1

A space X is said to be sg-normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint sg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$. **Example 4:** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is sg-normal.

Example 5: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$ is sg-normal, normal and almost normal. We have the following characterization of sg-normality.

6.2. Theorem 6.1

For a space X the following are equivalent:

- (i) X is sg-normal.
- (ii) For every pair of open sets *U* and *V* whose union is *X*, there exist sg-closed sets *A* and *B* such that *A*⊂*U*, *B* ⊂*V* and *A*∪*B* = *X*.
- (iii) For every closed set F and every open set G containing F, there exists a sg-open set U such that $F \subset U \subset \operatorname{sgcl}(U) \subset G$.

Proof: (i) \Rightarrow (ii): Let U and V be a pair of open sets in a sg-normal space X such that $X = U \cup V$. Then X - U, X - V are disjoint closed sets. Since X is sg-normal there exist disjoint sg-open sets U_1 and V_2 such that $X - U \subset U_1$ and $X - V \subset V_2$. Let $X = X - U_2$ and $X - V \subset V_3$. Then $X - U \subset U_3$ and $X - U \subset U_3$ and

(ii) \Rightarrow (iii): Let F be a closed set and G be an open set containing F. Then X-F and G are open sets whose union is X. Then by (b), there exist sg-closed sets W_1 and W_2 such that $W_1 \subset X-F$ and $W_2 \subset G$ and $W_1 \cup W_2 = X$. Then $F \subset X-W_1$, $X-G \subset X-W_2$ and $(X-W_1) \cap (X-W_2) = \emptyset$. Let $U = X-W_1$ and $V = X-W_2$. Then U and V are disjoint sg-open sets such that $F \subset U \subset X-V \subset G$. As X-V is sg-closed set, we have $sgcl(U) \subset X-V$ and $F \subset U \subset sgcl(U) \subset G$.

(iii) \Rightarrow (i): Let F_1 and F_2 be any two disjoint closed sets of X. Put $G = X - F_2$, then $F_1 \cap G = \emptyset$. $F_1 \subset G$ where G is an open set. Then by (c), there exists a sgopen set U of X such that $F_1 \subset U \subset sgcl(U) \subset G$. It follows that $F_2 \subset X - sgcl(U) = V$, say, then V is sg-open and $U \cap V = \emptyset$. Hence F_1 and F_2 are separated by sg-open sets U and V. Therefore X is sg-normal.

6.3. Theorem 6.2

A regular open subspace of a sg-normal space is sg-normal.

Example 6: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is sg-normal and sg-regular.

However we observe that every sg-normal sg-R₀ space is sg-regular.

6.4. Definition 6.2

A function $f:X \to Y$ is said to be almost–sg-irresolute if for each x in X and each sg-neighborhood V of f(x), $sgcl(f^{-1}(V))$ is a sg-neighborhood of x. Clearly every sg-irresolute map is almost sg-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

6.5. Lemma 6.1

f is almost sg-irresolute iff $f^1(V) \subset \text{sg-int}(sgcl(f^1(V))))$ for every $V \in SGO(Y)$.

6.6. Lemma 6.2

f is almost sg-irresolute iff $f(sgcl(U)) \subset sgcl(f(U))$ for every $U \in SGO(X)$.

Proof: Let $U \in SGO(X)$. Suppose $y \notin sgcl(f(U))$. Then there exists $V \in sg$ O(y) such that $V \cap f(U) = \phi$. Hence $f^{-1}(V) \cap U = \phi$. Since $U \in SGO(X)$, we have $sgint(sgcl(f^{-1}(V))) \cap sgcl(U) = \phi$. By lemma 6.1, $f^{-1}(V) \cap sgcl(U) = \phi$ and hence $V \cap f(sgcl(U)) = \phi$. This implies that $y \notin f(sgcl(U))$.

Conversely, if $V \in SGO(Y)$, then W = X- $sgcl(f^1(V))) \in sgO(X)$. By hypothesis, $f(sgcl(W)) \subset sgcl(f(W))$) and hence $f'(V) \subset sgcl(f'(V)) \subset sgcl(f'(V))$

6.7. Theorem 6.3

If f:X→Y is M-sg-open continuous almost sg-irresolute, X is sg-normal, then Y is sg-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^1(A)$ is closed and $f^1(B)$ is an open set of X such that $f^1(A) \subset f^1(B)$. As X is sg-normal, there exists a sg-open set U in X such that $f^1(A) \subset U \subset sgcl(U) \subset f^1(B)$. Then $f(f^1(A)) \subset f(gcl(U)) \subset f(f^1(B))$. Since $f^1(B) \subset f(f^1(B))$ is M-sg-open almost sg-irresolute surjection, we obtain $f^1(B) \subset f(f^1(B)) \subset f(f^1(B))$. Then again by Theorem 6.1 the space Y is sg-normal.

6.8. Lemma 6.3

A mapping f is M-sg-closed if and only if for each subset B in Y and for each sg-open set U in X containing $f^1(B)$, there exists a sg-open set V containing B such that $f^1(V) \subset U$.

6.9. Theorem 6.4

If f:X→Y is M-sg-closed continuous, X is sg-normal space, then Y is sg-normal.

Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

6.10. Theorem 6.5

If f is an M-sg-closed map from a weakly Hausdorff sg-normal space X onto a space Y such that $f^1(y)$ is S-closed relative to X for each $y \in Y$, then Y is $g-T_2$.

Proof: Let $y_1 \neq y_2 \in Y$. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [9]. As X is sg-normal, there exist disjoint $V_i \in SGO(X)$ such that $f^{-1}(y_i) \subset V_i$, for i = 1, 2. Since f is M-sg-closed, there exist disjoint $U_i \in SGO(Y, y_i)$ and $f^{-1}(U_i) \subset V_i$ for i = 1, 2. Hence Y is sg-T₂.

6.11. Theorem 6.6

For a space X we have the following:

Balasubramanian et al. On sq-separation axioms,

Indian Journal of Engineering, 2012, 1(1), 55-62,

- (a) If X is normal then for any disjoint closed sets A and B, there exist disjoint sg-open sets U, V such that $A \subset U$ and $B \subset V$;
- (b) If X is normal then for any closed set A and any open set V containing A, there exists an sg-open set U of X such that $A \subset U \subset sgcl(U) \subset V$.

6.12. Definition 6.2

X is said to be almost sg-normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint sg-open sets U and V such that A⊂U and B⊂V.

Clearly, every sg-normal space is almost sg-normal, but not conversely in general.

6.13. Theorem 6.7

For a space X the following statements are equivalent:

- X is almost sq-normal
- (ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist sg-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For every closed set A and every regular open set B containing A, there is a sg-open set V such that A⊂V⊂sgcl(V)⊂B.

Proof: (i)⇒(ii) Let U be an open set and V be a regular open set in an almost sg-normal space X such that U∪V = X. Then (X-U) is closed set and (X-V) is regular closed set with $(X-U) \cap (X-V) = \phi$. By almost sg-normality of X, there exist disjoint sg-open sets U_1 and V_1 such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $G = (X-V) \cap ($ X- U₁ and H = X-V₁. Then G and H are sg-closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are obvious.

One can prove that almost sg-normality is also regular open hereditary.

Almost sq-normality does not imply almost sq-regularity in general. However, we observe that every almost sq-normal sq-R₀ space is almost sq-regular.

6.14. Theorem 6.8

Every almost regular, sg-compact space X is almost sg-normal.

Recall that a function $f: X \rightarrow Y$ is called rc-continuous if inverse image of regular closed set is regular closed.

Now, we state the invariance of almost sg-normality in the following.

6.15. Theorem 6.9

If f is continuous M-sg-open rc-continuous and almost sg-irresolute surjection from an almost sg-normal space X onto a space Y, then Y is almost sg-

6.16. Definition 6.3

A space X is said to be mildly sg-normal if for every pair of disjoint regular closed sets F₁ and F₂ of X, there exist disjoint sg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 7: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is Mildly sg-normal.

We have the following characterization of mild sg-normality.

6.17. Theorem 6.10

For a space X the following are equivalent.

- (i) X is mildly sq-normal.
- (ii) For every pair of regular open sets U and V whose union is X, there exist sg-closed sets G and H such that G ⊂ U, H ⊂ V and G∪H = X.
- (iii) For any regular closed set A and every regular open set B containing A, there exists a sg-open set U such that A⊂U⊂sqc/(U)⊂B.
- (iv) For every pair of disjoint regular closed sets, there exist sg-open sets U and V such that $A \subset U$, $B \subset V$ and $sgcl(U) \cap sgcl(V) = \phi$.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild sg-normality is regular open hereditary.

6.18. Definition 6.4

A space X is weakly sq-regular if for each point x and a regular open set U containing $\{x\}$, there is a sq-open set V such that $x \in V \subset clV \subset U$.

Example 8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is weakly *sg*-regular.

Example 9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is not weakly *sg*-regular.

6.19. Theorem 6.11

If $f: X \to Y$ is an M-sq-open rc-continuous and almost sq-irresolute function from a mildly sq-normal space X onto a space Y, then Y is mildly sq-normal. **Proof:** Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^1(B)$. Since X is mildly sg-normal, there exists a sg-open set V such that $f^1(A) \subset V \subset sgcl(V) \subset f^{-1}(B)$ by Theorem 6.10. As f is M-sg-open and almost sg-irresolute surjection, $f(V) \in SGO(Y)$ and $A \subset f(V) \subset sgcl(f(V)) \subset B$. Hence Y is mildly sg-normal.

6.20. Theorem 6.12

If f:X→Y is rc-continuous, M-sg-closed map and X is mildly sg-normal space, then Y is mildly sg-normal.

7. sg-US SPACES

7.1. Definition 7.1

A sequence $\langle x_n \rangle$ is said to be sg-converges to a point x of X, written as $\langle x_n \rangle \to sg$ x if $\langle x_n \rangle$ is eventually in every sg-open set containing x. Clearly, if a sequence $\langle x_n \rangle$ *r*-converges to a point x of X, then $\langle x_n \rangle$ sg-converges to x.

7.2. Definition 7.2

X is said to be sg-US if every sequence $\langle x_n \rangle$ in X sg-converges to a unique point.

A set F is sequentially sg-closed if every sequence in F sg-converges to a point in F.

7.4. Definition 7.4

A subset G of a space X is said to be sequentially sg-compact if every sequence in G has a subsequence which sg-converges to a point in G.

7.5. Definition 7.5

A point y is a sg-cluster point of sequence $<x_n>$ iff $<x_n>$ is frequently in every sg-open set containing x. The set of all sg-cluster points of $<x_n>$ will be denoted by sg-cl(x_n).

7.6. Definition 7.6

A point y is sg-side point of a sequence $< x_n >$ if y is a sg-cluster point of $< x_n >$ but no subsequence of $< x_n >$ sg-converges to y.

7.7. Definition 7.7

A space X is said to be

- (i) $sg-S_1$ if it is sg-US and every sequence $< x_n > sg$ -converges with subsequence of $< x_n > sg$ -side points.
- (ii) sg-S₂ if it is sg-US and every sequence <x_n> in X sg-converges which has no sg-side point.

Using sequentially continuous functions, we define sequentially sg-continuous functions.

7.8. Definition 7.8

A function f is said to be sequentially sg-continuous at $x \in X$ if $f(x_n) \to^{sg} f(x)$ whenever $< x_n > \to^{sg} x$. If f is sequentially sg-continuous at all $x \in X$, then f is said to be sequentially sg-continuous.

7.9. Theorem 7.1

We have the following:

- (i) Every sg-T₂ space is sg-US.
- (ii) Every sg-US space is sg-T₁.
- (iii) X is sg-US iff the diagonal set is a sequentially sg-closed subset of X x X.
- (iv) X is sg-T₂ iff it is both sg-R₁ and sg-US.
- (v) Every regular open subset of a sg-US space is sg-US.
- (vi) Product of arbitrary family of sg-US spaces is sg-US.
- (vii) Every sg-S₂ space is sg-S₁ and Every sg-S₁ space is sg-US.

7.10. Theorem 7.2

In a sg-US space every sequentially sg-compact set is sequentially sg-closed.

Proof: Let X be sg-US space. Let Y be a sequentially sg-compact subset of X. Let $< x_n >$ be a sequence in Y. Suppose that $< x_n >$ sg-converges to a point in X-Y. Let $< x_{np} >$ be subsequence of $< x_n >$ that sg-converges to a point $y \in Y$ since Y is sequentially sg-compact. Also, let a subsequence $< x_{np} >$ of $< x_n >$ sg-converge to $x \in X$ -Y. Since $< x_{np} >$ is a sequence in the sg-US space X, x = y. Thus, Y is sequentially sg-closed set.

7.11. Theorem 7.3

If f and g are sequentially sg-continuous and Y is sg-US, then the set $A = \{x \mid f(x) = g(x)\}$ is sequentially sg-closed.

Proof: Let Y be sg-US. If there is a sequence $\langle x_n \rangle$ in A sg-converging to $x \in X$. Since f and g are sequentially sg-continuous, $f(x_n) \to^{sg} f(x)$ and $g(x_n) \to^{sg} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially sg-closed.

8. SEQUENTIALLY SUB-sg-CONTINUITY

In this section we introduce and study the concepts of sequentially sub-sg-continuity, sequentially nearly sg-continuity and sequentially sg-compact preserving functions and study their relations and the property of sg-US spaces.

8.1. Definition 8.1

A function f is said to be

- (i) sequentially nearly sg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to^{sg} x$ in X, there exists a subsequence $\langle x_n \rangle \to sg$ f(x).
- (ii) sequentially sub-sg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to^{sg} x$ in X, there exists a subsequence $\langle x_n \rangle \to^{sg} y$ such that $\langle f(x_n k) \rangle \to^{sg} y$.
- (iii) sequentially sg-compact preserving if f(K) is sequentially sg-compact in Y for every sequentially sg-compact set K of X.

8.2. Lemma 8.1

Every function f is sequentially sub-sg-continuous if Y is a sequentially sg-compact.

Proof: Let $\langle x_n \rangle \to g x$ in X. Since Y is sequentially sg-compact, there exists a subsequence $\{f(x_n k)\}$ of $\{f(x_n)\}$ sg-converging to a point $y \in Y$. Hence f is sequentially sub-sg-continuous.

8.3. Theorem 8.1

Every sequentially nearly sg-continuous function is sequentially sg-compact preserving.

Proof: Assume f is sequentially nearly sg-continuous and K any sequentially sg-compact subset of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially sg-compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ sg-converging to a point $x \in K$. By hypothesis, f is sequentially nearly sg-continuous and hence there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ such that $f(x_n) \to g$ f(x). Thus, there exists a subsequence $\langle y_n \rangle$ sg-converging to $f(x) \in f(K)$. This shows that f(K) is sequentially sg-compact set in Y.

8.4. Theorem 8.2

Every sequentially s-continuous function is sequentially sg-continuous.

Proof: Let f be a sequentially s-continuous and $< x_n > \to^s x \in X$. Then $< x_n > \to^s x$. Since f is sequentially s-continuous, $f(x_n) \to^s f(x)$. But we know that $< x_n > \to x$ implies $< x_n > \to^{sg} x$ and hence $f(x_n) \to^{sg} f(x)$ implies f is sequentially sg-continuous.

8.5. Theorem 8.3

Every sequentially sg-compact preserving function is sequentially sub-sg-continuous.

Proof: Suppose f is a sequentially sg-compact preserving function. Let x be any point of X and x_n any sequence in X sg-converging to x. We shall denote the set $\{x_n \mid n=1,2,3,\ldots\}$ by A and A and

discovery

8.6. Theorem 8.4

A function $f: X \to Y$ is sequentially sg-compact preserving iff f_{K} : $K \to f(K)$ is sequentially sub-sg-continuous for each sequentially sg-compact subset K of X. **Proof:** Suppose f is a sequentially sg-compact preserving function. Then f(K) is sequentially sg-compact set in Y for each sequentially sg-compact set K of X. Therefore, by Lemma 8.1 above, f_{K} : $K \to f(K)$ is sequentially sg-continuous function.

Conversely, let K be any sequentially sg-compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially sg-compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ sg-converging to a point $x \in K$. By hypothesis, f(K) is sequentially sub-sg-continuous and hence there exists a subsequence $\langle y_n \rangle$ of $\langle y_n \rangle$ sg-converging to a point $y \in f(K)$. This implies that f(K) is sequentially sg-compact set in Y. Thus, f(K) is sequentially sg-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-sg-continuous function to be sequentially sg-compact preserving.

8.7. Corollary 8.1

If f is sequentially sub-sg-continuous and f(K) is sequentially sg-closed set in Y for each sequentially sg-compact set K of X, then f is sequentially sg-compact preserving function.

REFERENCES

- 1. S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.
- 2. Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull.Cal.Math.Soc.,82(1990)415-422.
- 3. C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.
- 4. S. Balasubramanian and P. Aruna Swathi Vyjayanthi, On v-separation axioms Inter. J. Math. Archive, Vol 2, No. 8(2011) 1464-1473.
- 5. S. Balasubramanian and M. Lakshmi Sarada, gpr-separation axioms, Bull. Kerala Math. Association, Vol 8. No.1 (2011)157 173.
- 6. H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.
- 7. Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.
- 8. K.K. Dube and B.L. namdeo, To-Limit point of a set and its implications, J.Tripura Math. Soc, Vol.9 (2007)85-96.
- 9. G.L.Garg and D.Sivaraj, presemiclosed mappings, Periodica Math.Hung., 19(2)(1988) ,97-106.
- S. R. Malghan and G. B. Navalagi, Almost–p-regular, p-completely regular and almost –p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82),nr.4 (1990),317-326.
- 11. S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci., Bruxelles, 89 (1975), 395-402.
- 12. G.B.Navalagi, Further properties of preseparation axioms, (Unpublished)
- 13. G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.
- 14. G. B. Navalagi, Pre-US Spaces, Topology Atlas.
- 15. T.Noiri, Almost continuity and some separation axioms, Glasnik Mat., 9(29)(1974),131-135.
- T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376.
- 17. Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol.21. No.3,(1995),273-289
- 18. M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat., 5(25)(1970),141-152.
- 19. M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1)(1973)27-31.
- 20. T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.
- 21. A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly. 74 (1967), 261-266.