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ABSTRACT 
In this paper we define almost sg-normality and mild sg-normality, continue the study of further properties of sg-normality. We show that these three 
axioms are regular open hereditary. Also define the class of almost sg-irresolute mappings and show that sg-normality is invariant under almost sg-
irresolute M-sg-open continuous surjection.  

AMS Subject Classification: 54D15, 54D10. 

Key words and Phrases: sg-open, almost normal, midly normal, M-sg-closed, M-sg-open, rc-continuous. 

1. INTRODUCTION 

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T1 and T2 spaces, 

namely, S1 and S2. Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-
convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-
US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired 
with these we introduce sg-Normal Almost- sg-Normal, Mildly- sg-Normal, sg-US, sg-S1 and sg-S2. Also we examine sg-convergence, sequentially sg-
compact, sequentially sg-continuous maps, and sequentially sub sg-continuous maps in the context of these new concepts. All notions and symbols which 
are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no 
separation axioms are assumed explicitly stated.  

2. PRELIMINARIES 
2.1. Definition 2.1 
A X is called (i) g-closed if cl A U whenever A U and U is open in X. 

(ii) sg-closed if scl(A)  U whenever A U and U is semiopen in X.                

2.2. Definition 2.2 
A space X is said to be 

(i) T1 (T2) if for any x  y in X, there exist (disjoint) open sets U; V in X such that xU and yV. 
(ii) Weakly Hausdorff if each point of X is the intersection of regular closed sets of X.                     

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F1 and F2 , there exist disjoint open sets U and V such that F1  

U and F2  V.   

(iv) Almost normal if for each closed set A and each regular closed set B  such that AB = , there exist disjoint open sets U and V such that AU and 

BV. 

(v) Weakly regular if for each pair consisting of a regular closed set A and a point x such that A  {x} = , there exist disjoint open sets U and V such that x 

 U  and AV.                      
(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.                                  

(vii) R0 if for any point x and a closed set F with xF in X, there exists a open set G containing F but not x. 

(viii) R1 iff for x, y  X with cl{x}  cl{y}, there exist disjoint open sets U and V such that cl{x} U, cl{y}V. 
(ix) US-space if every convergent sequence has exactly one limit point to which it converges.              
(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.  
(xi) pre-S1 if it is pre-US and every sequence <xn> pre-converges with subsequence of <xn> pre-side points.      
(xii) pre-S2 if it is pre-US and every sequence <xn> in X pre-converges which has no pre-side point. 

(xiii)  is weakly countable compact if every infinite subset of X has a limit point in X. 
(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X. 

2.3. Definition 2.3 
Let A X. Then a point x is said to be a  

(i)  limit point of A if each open set containing x contains some point y of A such that x  y.  

(ii) T0–limit point of A if each open set containing x contains some point y of A such that cl{x}  cl{y}, or equivalently, such that they are topologically 
distinct. 
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(iii) pre-T0–limit point of A if each open set containing x contains some point y of A such that pcl{x}  pcl{y}, or equivalently, such that they are topologically 
distinct. 
Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; 
equivalently if they have disjoint closures. In fact, the T0–axiom is precisely to ensure that any two distinct points are topologically distinct. 

Example 1: Let X = {a, b, c, d} and τ = {{a}, {b, c}, {a, b, c}, X, }. Then b and c are the limit points but not the T0–limit points of the set {b, c}. Further d is a 
T0–limit point of {b, c}. 

Example 2: Let X = (0, 1) and τ = {, X, and Un = (0, 1–1⁄n), n = 2, 3, 4,. . . }. Then every point of X is a limit point of X. Every point of XU2 is a T0–limit 
point of X, but no point of U2 is a T0–limit point of X. 

2.4. Definition 2.4 
A set A together with all its T0–limit points will be denoted by T0–clA. 
Note 2:  i. Every T0–limit point of a set A is a limit point of the set but the converse is not true in general. 
 ii. In T0–space both are same. 
Note 3: R0–axiom is weaker than T1–axiom. It is independent of the T0–axiom. However T1 = R0+T0 
 
Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T1–space is weakly countable 
compact iff it is countable compact. 

3. sg-T0 LIMIT POINT 
3.1. Definition 3.01 
In X, a point x is said to be a sg-T0–limit point of A if each sg-open set containing x contains some point y of A such that sgcl{x}  sgcl{y}, or equivalently; 
such that they are topologically distinct with respect to sg-open sets. 

Note 5:regular open set  open set  semi-open set  sg-open set we have 

r-T0–limit point  T0–limit point  s-T0–limit point  sg-T0–limit point 

Example 3: Let X = {a, b, c} and  = {, b, a, b, b, c, X. For A = {a, b}, a is sg-T0–limit point. 

3.2. Definition 3.02 
A set A together with all its sg-T0–limit points is denoted by T0-sgcl(A) 

3.3. Lemma 3.01 
If x is a sg-T0–limit point of a set A then x is sg-limit point of A. 
 

3.4. Lemma 3.02  
(i)  If X is sg-T0–space then every sg-T0–limit point and every sg-limit point are equivalent. 
(ii) If X is r-T0–space then every sg-T0–limit point and every sg-limit point are equivalent.  
 

3.5. Theorem 3.03 
For x ≠ y X,  

(i) x is a sg-T0–limit point of {y} iff xsgcl{y} and ysgcl{x}. 

(ii) x is not a sg-T0–limit point of {y} iff either xsgcl{y}or sgcl{x} = sgcl{y}. 

(iii) x is not a sg-T0–limit point of {y} iff either xsgcl{y}or ysgcl{x}. 
 

3.6. Corollary 3.04 
(i) If x is a sg-T0–limit point of {y}, then y cannot be a sg-limit point of {x}. 
(ii) If sgcl{x} = sgcl{y}, then neither x is a sg-T0–limit point of {y} nor y is a sg-T0–limit point of {x}. 

(iii) If a singleton set A has no sg-T0–limit point in X, then sgclA = sgcl{x} for all x sgcl{A}. 
 

3.7. Lemma 3.05 
In X, if x is a sg-limit point of a set A, then in each of the following cases x becomes sg-T0–limit point of A ({x} ≠ A). 

(i) sgcl{x}  sgcl{y} for yA, x  y. 
(ii) sgcl{x} = {x} 
(iii) X is a sg-T0–space. 

(iv) A{x} is sg-open 
  

4. sg-T0 AND sg-Ri AXIOMS, i = 0,1 
In view of Lemma 3.6(iii), sg-T0–axiom implies the equivalence of the concept of limit point of a set with that of sg-T0–limit point of the set. But for the 

converse, if x sgcl{y} then sgcl{x} ≠ sgcl{y} in general, but if x is a sg-T0–limit point of {y}, then sgcl{x} = sgcl{y}. 

4.1. Lemma 4.01 
In a space X, a limit point x of {y} is a sg-T0–limit point of {y} iff  sgcl{x} ≠ sgcl{y}. 
This lemma leads to characterize the equivalence of sg-T0–limit point and sg-limit point of a set as sg-T0–axiom. 
 

4.2. Theorem 4.02 
The following conditions are equivalent: 
(i) X is a sg-T0  space 
(ii) Every sg-limit point of a set A is a sg-T0–limit point of A 
(iii) Every r-limit point of a singleton set {x} is a sg-T0–limit point of {x} 

(iv) For any x, y in X, x ≠ y if x sgcl{y}, then x is a sg-T0–limit point of  {y} 
Note 6: In a sg-T0–space X if every point of X is a r-limit point of X, then every point of X is sg-T0–limit point of X. But a space X in which each point is a 
sg-T0–limit point of X is not necessarily a sg-T0–space 
 

4.3. Theorem 4.03 
The following conditions are equivalent: 
(i) X is a sg-R0  space 

(ii) For any x, y in X, if x sgcl{y}, then x is not a sg-T0–limit point of {y} 
(iii) A  point sg-closure set has no sg-T0–limit point in X 
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(iv) A singleton set has no sg-T0–limit point in X. 
 

4.4. Theorem 4.04 
In a sg-R0 space X, a point x is sg-T0–limit point of A iff every sg-open set containing x contains infinitely many points of A with each of which x is 
topologically distinct 
 

4.5. Theorem 4.05 
X is sg-R0 space iff a set A of the form A =  sgcl{xi i =1 to n} a finite union of point closure sets has no sg-T0–limit point. 
If sg-R0 space is replaced by rR0 space in the above theorem, we have the following corollaries: 
 

4.6. Corollary 4.06 
The following conditions are equivalent: 
(i) X is a r-R0 space 

(ii) For any x, y in X, if x sgcl{y}, then x is not a sg-T0–limit point of {y} 
(iii) A  point sg-closure set has no sg-T0–limit point in X 
(iv) A singleton set has no sg-T0–limit point in X. 
 

4.7. Corollary 4.07 
In an rR0–space X,  
(i) If a point x is rT0–limit point of a set then every sg-open set containing x contains infinitely many points  
of A with each of which x is topologically distinct. 
(ii) If a point x is sg-T0–limit point of a set then every sg-open set containing x contains infinitely many points of A with each of which x is topologically 
distinct. 

(iii) If A =  sgcl{xi, i =1 to n} a finite union of point closure sets has no sg-T0–limit point. 

(iv) If X =  sgcl{xi, i =1 to n} then X  has no sg-T0–limit point. 
Various characteristic properties of sg-T0–limit points studied so far is enlisted in the following theorem. 

4.8. Theorem 4.08 
In a sg-R0–space, we have the following: 
(i)  A singleton set has no sg-T0–limit point in X. 
(ii)  A finite set has no sg-T0–limit point in X. 
(iii)  A point sg-closure has no set sg-T0–limit point in X 
(iv)  A finite union point sg-closure sets have no set sg-T0–limit point in X. 

(v)  For x, y X, xT0– sgcl{y} iff x = y. 

(vi)  For any x, y X, x ≠ y iff neither x is sg-T0–limit point of {y}nor y is sg-T0–limit point of {x} 

(vii)  For any x, y X, x ≠ y iff T0– sgcl{x} T0– sgcl{y} = . 

(viii) Any point xX is a sg-T0–limit point of a set A in X iff every sg-open set containing x contains infinitely many points of A with each which x is 
topologically distinct. 

4.9. Theorem 4.09 
X is sg-R1 iff for any sg-open set U in X and points x, y such that xXU, yU, there exists a sg-open set V in X such that yVU, xV. 
 

4.10. Lemma 4.10 
In  sg-R1 space X, if x is a sg-T0–limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that VU, x 
sgcl(V). 
 

4.11. Lemma 4.11 
In a sg- regular space X, if x is a sg-T0–limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that 

sgcl(V)U, x sgcl(V). 
 

4.12. Corollary 4.12 
In a regular space X, 

(i)   If x is a sg-T0–limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V)U, x sgcl(V). 

(ii)  If x is a T0–limit point of X, then for any non empty sg-open set U, there exists a non empty sg-open set V such that sgcl(V)U, x sgcl(V). 
 

4.13. Theorem 4.13 
If X is a sg-compact sg-R1-space, then X is a Baire Space. 
Proof: Let {An} be a countable collection of sg-closed sets of X, each An having empty interior in X. Take A1, since A1 has empty interior, A1 does not 

contain any sg-open set say U0. Therefore we can choose a point yU0 such that yA1. For X is sg-regular, and y(XA1)U0, a sg-open set, we can find 

a sg-open set U1 in X such that yU1, sgcl(U1) (XA1)U0. Hence U1 is a non empty sg-open set in X such that sgcl(U1)U0 and sgcl(U1)A1 = . 
Continuing this process, in general, for given non empty sg-open set Un-1, we can choose a point of Un -1 which is not in the sg-closed set An and a sg-open 

set Un containing this point such that sgcl(Un) Un-1 and sgcl(Un)An = . Thus we get a sequence of nested non empty sg-closed sets which satisfies the 

finite intersection property. Therefore  sgcl(Un) ≠ . Then some x sgcl(Un) which in turn implies that xUn-1 as sgcl(Un)Un-1 and xAn for each n. 
 

4.14. Corollary 4.14 
If X is a compact sg-R1-space, then X is a Baire Space. 
 

4.15. Corollary 4.15 
Let X be a sg-compact sg-R1-space. If {An} is a countable collection of sg-closed sets in X, each An having non-empty sg-interior in X, then there is a point 
of X which is not in any of the An. 
 

4.16. Corollary 4.16 
Let X be a sg-compact R1-space. If {An} is a countable collection of sg-closed sets in X, each An having non-empty sg- interior in X, then there is a point of 
X which is not in any of the An. 
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4.17. Theorem 4.17 
Let X be a non empty compact sg-R1-space. If every point of X is a sg-T0–limit point of X then X is uncountable. 
Proof: Since X is non empty and every point is a sg-T0-limit point of X, X must be infinite. If X is countable, we construct a sequence of sg- open sets {Vn} 
in X as follows: 

Let X = V1, then for x1 is a sg-T0-limit point of X, we can choose a non empty sg-open set V2 in X such that V2 V1 and x1 sgclV2. Next for x2 and non 

empty sg-open set V2, we can choose a non empty sg-open set V3 in X such that V3 V2 and x2 sgclV3. Continuing this process for each xn and a non 

empty sg-open set Vn,  we can choose a non empty sg-open set Vn+1 in X such that Vn+1 Vn and xn sgclVn+1.  

Now consider the nested sequence of sg-closed sets sgclV1  sgclV2  sgclV3 ……… sgclVn . . .   Since X is sg-compact and {sgclVn} the sequence 

of sg-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that x sgclVn. Further xX and xV1, 
which is not equal to any of the points of X. Hence X is uncountable. 
 

4.18. Corollary 4.18 
Let X be a non empty sg-compact sg-R1-space. If every point of X is a sg-T0–limit point of X then X is uncountable 
 

5. sg–T0-IDENTIFICATION SPACES AND sg–SEPARATION AXIOMS 
5.1. Definition 5.01 
Let (X, ) be a topological space and let  be the equivalence relation on X defined by xy iff sgcl{x} =  sgcl{y} 
 

5.2. Problem 5.02 
Show that xy iff sgcl{x} = sgcl{y} is an equivalence relation 
 

5.3. Definition 5.03 
The space (X0, Q(X0)) is called the sg-T0–identification space of (X, ), where X0 is the set of equivalence classes of   and Q(X0) is the decomposition 
topology on X0. 

Let PX: (X, )→ (X0, Q(X0)) denote the natural map 
 

5.4. Lemma 5.04 
If xX and A  X, then x sgclA iff every sg-open set containing x intersects A. 
 

5.5. Theorem 5.05 
The natural map PX:(X,)→ (X0, Q(X0)) is closed, open and PX –1(PX(O)) = O for all OPO(X,) and (X0, Q(X0)) is  sg-T0 

Proof: Let O PO(X, ) and let C PX(O). Then there exists xO such that PX(x) = C. If yC, then sgcl{y} = sgcl{x}, which, by lemma, implies yO. Since 

   PO(X,), then PX –1(PX(U)) = U for all U, which implies PX  is closed and open. 

Let G, HX0 such that G  H; let xG and yH. Then sgcl{x}   sgcl{y}, which implies xsgcl{y} or ysgcl{x}, say xsgcl{y}. Since PX is continuous and 

open, then GA = PX{Xsgcl{y}}PO(X0, Q(X0)) and HA 
 

5.6. Theorem 5.06 
The following are equivalent:  

(i) X is sgR0 (ii) X0 = {sgcl{x}: xX} and (iii) (X0, Q(X0)) is sgT1 

Proof: (i)  (ii)  Let xCX0. If yC, then ysgcl{y} = sgcl{x}, which implies Csgcl{x}. If ysgcl{x}, then xsgcl{y}, since, otherwise, 

xXsgcl{y}PO(X,) which implies sgcl{x}Xsgcl{y}, which is a contradiction. Thus, if ysgcl{x}, then xsgcl{y}, which implies  sgcl{y} = sgcl{x} and 

yC. Hence X0 = {sgcl{x}: xX} 

(ii)(iii) Let A  BX0. Then there exists x, yX such that A = sgcl{x}; B = sgcl{y}, and sgcl{x}sgcl{y} = . Then AC = PX (Xsgcl{y})PO(X0, Q(X0)) and 

BC. Thus (X0, Q(X0)) is sg-T1 

(iii)  (i) Let xUSGO(X). Let yU and Cx, Cy X0 containing x and y respectively. Then x sgcl{y}, which implies Cx  Cy and there exists sg-open set A 

such that CxA and CyA. Since PX is continuous and open, then yB = PX
–1(A) xSGO(X) and xB, which implies ysgcl{x}. Thus sgcl{x} U. This is 

true for all sgcl{x} implies sgcl{x} U. Hence X is sg-R0 
 

5.7. Theorem 5.07 
(X,  ) is sg-R1 iff (X0, Q(X0)) is sg-T2 
The proof is straight forward using theorems 5.05 and 5.06 and is omitted 
 

5.8. Theorem 5.08 
X is sg-Ti; i = 0,1,2. iff there exists a sg-continuous, almost–open, 1–1 function from (X, ) into a sg-Ti  space ;  i = 0,1,2. respectively.  
 

5.9. Theorem 5.09 
If:(X, )→ (Y, ) is sg-continuous, sg-open, and x, yX such that sgcl{x} = sgcl{y}, then sgcl{(x)} = sgcl{(y)}. 
 

5.10. Theorem 5.10 
The following are equivalent 

(i)   (X, ) is sg-T0  

(ii)  Elements of X0 are singleton sets and  
(iii)There exists a sg-continuous, sg-open, 1–1 function: (X,  )→ (Y, ), where  (Y, ) is sg-T0 

Proof:  (i) is equivalent to (ii) and (i)  (iii) are straight forward and is omitted.  

(iii)  (i)  Let x, yX such that (x)  (y), which implies sgcl{(x)}  sgcl{(y)}. Then by theorem 5.09, sgcl{x}  sgcl{y}. Hence (X,  ) is sg-T0 

 
5.11. Corollary 5.11 
A space (X,  ) is sg-Ti ;  i = 1,2 iff (X,  ) is sg-Ti –- 1 ;  i = 1,2, respectively, and there exists a sg-continuous , sg-open, 1–1 function : (X,  ) into a sg-T0  
space. 

 
5.12. Definition 5.04 
 is point–sg-closure 1–1 iff for x, yX such that sgcl{x}  sgcl{y}, sgcl{(x)}  sgcl{(y)}. 
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5.13. Theorem 5.12 
(i)If : (X,  )→ (Y, ) is point– sg-closure 1–1 and (X,  ) is sg-T0 , then  is 1–1 

(ii)If : (X,  )→ (Y, ), where (X,  )and (Y, ) are sg-T0  then  is point– sg-closure 1–1 iff  is 1–1 
The following result can be obtained by combining results for sg-T0– identification spaces, sg-induced functions and sg-Ti spaces;  i = 1,2. 
 

5.14. Theorem 5.13 
X is sg-Ri ;  i = 0,1 iff there exists a sg-continuous , almost–open  point– sg-closure 1–1 function : (X,  ) into a sg-Ri  space;  i = 0,1 respectively. 
 

6. sg-Normal; Almost sg-normal and Mildly sg-normal spaces 
6.1. Definition 6.1 
A space X is said to be sg-normal if for any pair of disjoint closed sets F1 and F2 , there exist disjoint sg-open sets U and V such that F1  U and F2  V. 

Example 4: Let X = {a, b, c} and  = {, a, b, c, X. Then X is sg-normal. 

Example 5: Let X = a, b, c, d with  = {, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is sg-normal, normal and almost normal. 
We have the following characterization of sg-normality. 
 

6.2. Theorem 6.1 
For a space X the following are equivalent: 
(i)   X is sg-normal. 

(ii)  For every pair of open sets U and V whose union is X, there exist sg-closed sets A and B such that AU, B V and AB = X. 

(iii) For every closed set F and every open set G containing F, there  exists a sg-open set U such that         FUsgcl(U)G. 

Proof: (i)(ii): Let U and V be a pair of open sets in a sg-normal space X such that X = UV. Then X–U, X–V are disjoint closed sets. Since X is sg-

normal there exist disjoint sg-open sets U1 and V1 such that      X–UU1 and X-VV1. Let A = X–U1, B = X–V1. Then A and B are sg-closed sets such that 

AU, BV and AB = X. 

(ii) (iii): Let F be a closed set and G be an open set containing F. Then X–F and G are open sets whose union is X. Then by (b), there exist sg-closed 

sets W1 and W2 such that W1   X–F and W2  G and    W1W2 = X. Then F X–W1, X–G  X–W2 and (X–W1)(X–W2) = . Let U = X–W1 and V= X–W2. 

Then U and V are disjoint sg-open sets such that FUX–VG. As X–V is sg-closed set, we have sgcl(U) X–V and FUsgcl(U)G. 

(iii)  (i): Let F1 and F2 be any two disjoint closed sets of X. Put G = X–F2, then F1G = . F1G where G is an open set. Then by (c), there exists a sg-

open set U of X such that F1  U  sgcl(U) G. It follows that F2  X–sgcl(U) = V, say, then V is sg-open and UV = . Hence F1 and F2 are separated by 
sg-open sets U and V. Therefore X is sg-normal. 

6.3. Theorem 6.2 
A regular open subspace of a sg-normal space is sg-normal. 

Example 6: Let X = a, b, c, d with  = {, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is  sg-normal and sg-regular. 
However we observe that every sg-normal sg-R0 space is sg-regular. 
 

6.4. Definition 6.2 
A function f:X→Y is said to be almost–sg-irresolute if for each x in X and each sg-neighborhood V of f(x), sgcl(f –1(V)) is a sg-neighborhood of x. 
Clearly every sg-irresolute map is almost sg-irresolute. 
The Proof of the following lemma is straightforward and hence omitted. 

6.5. Lemma 6.1 
f is almost sg-irresolute iff f-1(V)  sg-int(sgcl(f-1(V))))  for every VSGO(Y). 
 

6.6. Lemma 6.2 
f is almost sg-irresolute iff f(sgcl(U))  sgcl(f(U)) for every USGO(X). 

Proof: Let USGO(X).Suppose y sgcl(f(U)). Then there exists V sg O(y) such that Vf(U) = . Hence f -1(V)U= . Since USGO(X), we have sg-

int(sgcl(f-1(V)))  sgcl(U) = . By lemma 6.1, f -1(V) sgcl(U) =  and hence  Vf(sgcl(U)) = . This implies that yf(sgcl(U)). 

Conversely, if VSGO(Y), then W = X- sgcl(f-1(V))) sgO(X). By hypothesis, f(sgcl(W)) sgcl (f(W))) and hence                   X- sg-int(sgcl(f-1(V))) = 

sgcl(W)f-1(sgcl(f(W)))f(sgcl[f(X-f-1(V))])f –1[sgcl(Y-V)] = f -1(Y-V) = X-f-1(V). Therefore,                   f-1(V) sg-int(sgcl(f-1(V))). By lemma 6.1, f is almost 
sg-irresolute. 
  

6.7. Theorem 6.3 
If f:X→Y  is M-sg-open continuous almost sg-irresolute, X is sg-normal, then Y is sg-normal.  
Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f-1(A) is closed and f-1(B) is an open set of X such that f-1 

(A)  f-1(B). As X is sg-normal, there exists a sg-open set U in X such that f-1(A)  U  sgcl(U) f-1(B). Then f(f-1(A)) f(U)  f(sgcl(U))   f(f-1(B)). Since f 

is M-sg-open almost sg-irresolute surjection, we obtain A f(U)  sgcl(f(U))  B. Then again by Theorem 6.1 the space Y is sg-normal. 

6.8. Lemma 6.3 
A mapping f  is M-sg-closed if and only if for each subset B in Y and for each sg-open set U in X containing f-1(B), there exists a sg-open set V containing 

B such that f-1(V)U. 

6.9. Theorem 6.4 
If f:X→Y is M-sg-closed continuous, X is sg-normal space, then Y is sg-normal. 
Proof of the theorem is routine and hence omitted. 
Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result. 

6.10. Theorem 6.5 
If f  is an M-sg-closed map from a weakly Hausdorff sg-normal space X onto a space Y such that f-1(y) is S-closed relative to X for each yY , then Y is 
sg-T2. 

Proof: Let y1  y2Y. Since X is weakly Hausdorff, f -1(y1) and f -1(y2) are disjoint closed subsets of X by lemma 2.2 [9]. As X is sg-normal, there exist 

disjoint Vi SGO(X) such that f -1(yi)  Vi, for i = 1,2. Since f is M-sg-closed, there exist disjoint UiSGO(Y, yi) and f -1(Ui)  Vi for i = 1,2. Hence Y is sg-T2. 
 

6.11. Theorem 6.6 
For a space X we have the following: 
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(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint sg-open sets U, V such that AU and BV; 

(b) If X is normal then for any closed set A and any open set V containing A, there exists an sg-open set U of X such that AUsgcl(U) V. 
 

6.12. Definition 6.2 
X is said to be almost sg-normal if for each closed set A and each regular closed set B such that AB = , there exist disjoint sg-open sets U and V such 

that AU and BV. 
Clearly, every sg-normal space is almost sg-normal, but not conversely in general. 
 

6.13. Theorem 6.7 
For a space X the following statements are equivalent: 
(i)   X is almost sg-normal 
(ii)  For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist sg-closed sets G and H such that 

GU ,HV and GH = X. 

(iii) For every closed set A and every regular open set B containing A, there is a sg-open set V such that AVsgcl(V)B. 

Proof: (i)(ii) Let U be an open set and V be a regular open set in an almost sg-normal space X such that UV = X. Then (X-U) is closed set and (X-V) is 

regular closed set with (X-U)(X-V) = . By almost sg-normality of X, there exist disjoint sg-open sets U1 and V1 such that X-U  U1 and X-V  V1. Let G = 

X- U1 and H = X-V1. Then G and H are sg-closed sets such that GU, HV and GH = X. 

(ii)  (iii) and (iii)  (i) are obvious. 
One can prove that almost sg-normality is also regular open hereditary. 
Almost sg-normality does not imply almost sg-regularity in general. However, we observe that every almost sg-normal sg-R0 space is almost sg-regular. 
 

6.14. Theorem 6.8 
Every almost regular, sg-compact space X is almost sg-normal. 

Recall that a function f : X→ Y is called rc-continuous if inverse image of regular closed set is regular closed. 
Now, we state the invariance of almost sg-normality in the following. 

6.15. Theorem 6.9 
If f is continuous M-sg-open rc-continuous and almost sg-irresolute surjection from an almost sg-normal space X onto a space Y, then Y is almost sg-
normal. 
 

6.16. Definition 6.3 
A space X is said to be mildly sg-normal if for every pair of disjoint regular closed sets F1 and F2 of X, there exist disjoint sg-open sets U and V such that 

F1  U and F2   V.  

Example 7: Let X = a, b, c, d with  = {, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is Mildly sg-normal. 
We have the following characterization of mild sg-normality. 

6.17. Theorem 6.10 
For a space X the following are equivalent. 
(i)    X is mildly sg-normal.  

(ii)   For every pair of regular open sets U and V whose union is X, there exist sg-closed sets G and H such that G  U, H  V and GH = X. 

(iii)  For any regular closed set A and every regular open set B containing A, there exists a sg-open set U such that AUsgcl(U)B. 

(iv)  For every pair of disjoint regular closed sets, there exist sg-open sets U and V such that AU, BV and sgcl(U) sgcl(V) = . 
This theorem may be proved by using the arguments similar to those of Theorem 6.7. 
Also, we observe that mild sg-normality is regular open hereditary. 
 

6.18. Definition 6.4 
A space X is weakly sg-regular if for each point x and a regular open set U containing {x}, there is a sg-open set V such that xV  clV  U. 

Example 8: Let X = {a, b, c} and  = {, b,a, b,b, c, X. Then X is weakly sg-regular. 

Example 9: Let X = {a, b, c} and  = {, a,b,a, b, X. Then X is not weakly sg-regular. 
 

6.19. Theorem 6.11 
If f : X → Y is an M-sg-open rc-continuous and almost sg-irresolute function from a mildly sg-normal space X onto a space Y, then Y is mildly sg-normal. 
Proof:  Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f,   f –1(A) is a regular closed set contained in the 

regular open set f-1(B). Since X is mildly sg-normal, there exists a sg-open set V such that f-1(A) V sgcl(V)  f –1(B)  by Theorem 6.10. As f is M-sg-open 

and almost sg-irresolute surjection, f(V)SGO(Y) and A f(V)  sgcl(f(V)) B. Hence Y is mildly sg-normal. 
 

6.20. Theorem 6.12 
If f:X→Y is rc-continuous, M-sg-closed map and X is mildly sg-normal space, then Y is mildly sg-normal. 
 

7. sg-US SPACES 
7.1. Definition 7.1 
A sequence <xn> is said to be sg-converges to a point x of X, written as <xn> →sg x if <xn> is eventually in every sg-open set containing x. 
Clearly, if a sequence <xn> r-converges to a point x of X, then <xn> sg-converges to x. 
 

7.2. Definition 7.2 
X is said to be sg-US if every sequence <xn> in X sg-converges to a unique point. 
 

7.3. Definition 7.3 
A set F is sequentially sg-closed if every sequence in F sg-converges to a point in F. 
 

7.4. Definition 7.4 
A subset G of a space X is said to be sequentially sg-compact if every sequence in G has a subsequence which sg-converges to a point in G. 
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7.5. Definition 7.5 
A point y is a sg-cluster point of sequence <xn> iff <xn> is frequently in every sg-open set containing x.  The set of all sg-cluster points of <xn> will be 
denoted by sg-cl(xn). 
 

7.6. Definition 7.6 
A point y is sg-side point of a sequence <xn> if y is a sg-cluster point of <xn> but no subsequence of <xn> sg-converges to y. 
 

7.7. Definition 7.7 
A space X is said to be  
(i)  sg-S1 if it is sg-US and every sequence <xn> sg-converges with subsequence of <xn> sg-side points. 
(ii) sg-S2 if it is sg-US and every sequence <xn> in X sg-converges which has no sg-side point. 
Using sequentially continuous functions, we define sequentially sg-continuous functions. 
 

7.8. Definition 7.8 
A function f is said to be sequentially sg-continuous at x  X if f(xn) →sg f(x) whenever <xn> →sg x. If f is sequentially sg-continuous at all xX, then f is 
said to be sequentially sg-continuous. 
 

7.9. Theorem 7.1 
We have the following: 
(i)    Every sg-T2 space is sg-US. 
(ii)   Every sg-US space is sg-T1. 
(iii)  X is sg-US iff the diagonal set is a sequentially sg-closed subset of X x X. 
(iv)  X is sg-T2 iff it is both sg-R1 and sg-US. 
(v)   Every regular open subset of a sg-US space is sg-US. 
(vi)  Product of arbitrary family of sg-US spaces is sg-US. 
(vii) Every sg-S2 space is sg-S1 and Every sg-S1 space is sg-US. 
 

7.10. Theorem 7.2 
In a sg-US space every sequentially sg-compact set is sequentially sg-closed. 
Proof: Let X be sg-US space.  Let Y be a sequentially sg-compact subset of X.  Let <xn> be a sequence in Y. Suppose that <xn> sg-converges to a point 

in X-Y.  Let <xnp> be subsequence of <xn> that sg-converges to a point y  Y since Y is sequentially sg-compact.  Also, let a subsequence <xnp> of <xn> 

sg-converge to x  X-Y.  Since <xnp> is a sequence in the sg-US space X, x = y. Thus, Y is sequentially sg-closed set. 
 

7.11. Theorem 7.3 
If f and g are sequentially sg-continuous and Y is sg-US, then the set A = {x | f(x) = g(x)} is sequentially sg-closed. 

Proof: Let Y be sg-US. If there is a sequence <xn> in A sg-converging to x  X. Since f and g are sequentially sg-continuous, f(xn) →sg f(x) and g(xn) →sg 

g(x). Hence f(x) = g(x) and xA. Therefore, A is sequentially sg-closed. 
 

8. SEQUENTIALLY SUB-sg-CONTINUITY 
In this section we introduce and study the concepts of sequentially sub-sg-continuity, sequentially nearly sg-continuity and sequentially sg-compact 
preserving functions and study their relations and the property of sg-US spaces. 
 

8.1. Definition 8.1 
A function f is said to be 

(i)    sequentially nearly sg-continuous if for each point xX and each sequence <xn> →sg x in X, there exists a subsequence <xnk> of  <xn> such that 

<f(xnk)>→ sg f(x). 

(ii)  sequentially sub-sg-continuous if for each point xX and each sequence <xn> →sg x in X, there exists a subsequence <xnk> of <xn> and a point yY 

such that <f(xnk)> →sg y. 
(iii) sequentially sg-compact preserving if f(K) is sequentially sg-compact in Y for every sequentially sg-compact set K of X. 
 

8.2. Lemma 8.1 
Every function f is sequentially sub-sg-continuous if Y is a sequentially sg-compact. 

Proof: Let <xn> →sg x in X. Since Y is sequentially sg-compact, there exists a subsequence {f(xnk)} of {f(xn)} sg-converging to a point yY. Hence f is 
sequentially sub-sg-continuous. 
 

8.3. Theorem 8.1 
Every sequentially nearly sg-continuous function is sequentially sg-compact preserving. 
Proof: Assume f is sequentially nearly sg-continuous and K any sequentially sg-compact subset of X. Let <yn> be any sequence in f (K). Then for each 

positive integer n, there exists a point xn  K such that f(xn) = yn. Since <xn> is a sequence in the sequentially sg-compact set K, there exists a 

subsequence <xnk> of <xn> sg-converging to a point x  K. By hypothesis, f is sequentially nearly sg-continuous and hence there exists a subsequence 

<xj> of <xnk> such that f(xj)→ sg f(x). Thus, there exists a subsequence <yj> of <yn> sg-converging to f(x)f(K). This shows that f(K) is sequentially sg-
compact set in Y. 
 

8.4. Theorem 8.2 
Every sequentially s-continuous function is sequentially sg-continuous. 

Proof: Let f be a sequentially s-continuous and <xn> →s xX. Then <xn> →s x. Since f is sequentially s-continuous, f(xn)→s f(x). But we know that <xn>→s 

x implies <xn> →sg x and hence f(xn)→ sg f(x) implies f is sequentially sg-continuous. 
 

8.5. Theorem 8.3 
Every sequentially sg-compact preserving function is sequentially sub-sg-continuous. 
Proof: Suppose f is a sequentially sg-compact preserving function. Let x be any point of X and <xn> any sequence in X sg-converging to x. We shall 

denote the set {xn | n= 1,2,3, …} by A  and K = A  {x}. Then K is sequentially sg-compact since (xn) →sg x. By hypothesis, f is sequentially sg-compact 
preserving and hence f(K) is a sequentially sg-compact set of Y. Since {f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of {f(xn)} sg-

converging to a point yf(K). This implies that f is sequentially sub-sg-continuous. 
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8.6. Theorem 8.4 
A function f: X→ Y is sequentially sg-compact preserving iff f/K: K → f(K) is sequentially sub-sg-continuous for each sequentially sg-compact subset K of X.  
Proof: Suppose f is a sequentially sg-compact preserving function. Then f(K) is sequentially sg-compact set in Y for each sequentially sg-compact set K 

of X. Therefore, by Lemma 8.1 above, f/K: K→ f(K) is sequentially sg-continuous function.  

Conversely, let K be any sequentially sg-compact set of X. Let <yn> be any sequence in f(K). Then for each positive integer n, there exists a point xnK 

such that f(xn) = yn. Since <xn> is a sequence in the sequentially sg-compact set K, there exists a subsequence <xnk> of <xn> sg-converging to a point x  

K. By hypothesis, f /K: K→ f(K) is sequentially sub-sg-continuous and hence there exists a subsequence <ynk> of <yn> sg-converging to a point y 
f(K).This implies that f(K) is sequentially sg-compact set in Y. Thus, f is sequentially sg-compact preserving function. 
The following corollary gives a sufficient condition for a sequentially sub-sg-continuous function to be sequentially sg-compact preserving. 

8.7. Corollary 8.1 
If f is sequentially sub-sg-continuous and f(K) is sequentially sg-closed set in Y for each sequentially sg-compact set K of X, then f is sequentially sg-
compact preserving function. 
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