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ABSTRACT 

Acute myeloid leukemia (AML) with FLT3 mutations is a malignant blood cancer. 

However, current FLT3 inhibitors used in its treatment have significant side effects 

and drug resistance problems. Our study aimed to identify relatively safe and 

effective FLT3 inhibitors from natural phytocompounds to overcome the limitations 

of current therapies. A total of 2792 phytocompounds were collected from 19 

medicinal plants and screened virtually against the FLT3 protein active site. Fifteen 

top compounds were selected based on docking scores. ADMET analysis and 

molecular dynamics (MD) simulation were performed to evaluate pharmacokinetics, 

toxicity, and stability. Three compounds — asperglaucide, 17beta-

hydroxywithanolide K, and withanicandrin — showed strong binding affinities (−9.4, 

−10.1, and −10.9 kcal/mol, respectively), which were superior to the synthetic 

inhibitors gilteritinib (−9.1 kcal/mol). ADMET analysis confirmed favorable GI 

absorption, solubility, and low toxicity, comparable to gilteritinib. The 100-ns MD 

simulations (RMSD, RMSF, RG, SASA, hydrogen bonds) showed that asperglaucide 

formed the most stable protein-ligand complex. Natural compounds, especially 

asperglaucide, have shown promising potential as FLT3 inhibitors for the treatment 

of AML. Further in vitro and in vivo studies are needed to verify their therapeutic 

efficacy. 
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GRAPHICAL ABSTRACT 

 

 
 

 

1. INTRODUCTION 

Acute myeloid leukemia (AML) is a type of malignant blood cancer that disrupts the process of making normal blood cells in the bone 

marrow. The disease occurs when abnormal myeloid progenitor cells begin to grow and accumulate abnormally (PDQ Adult Treatment 

Editorial Board, 2002). These abnormal cells cannot differentiate into normal hematopoietic cells, which disrupts the normal process of 

producing red blood cells (RBCs), white blood cells (WBCs), and platelets in the blood (Döhner et al., 2015). Approximately 30% of 

AML patients have mutations or genetic changes in the FLT3 (Fms-like Tyrosine Kinase 3) gene. The most common and vital variant is 

FLT3-ITD (Internal Tandem Duplication). This results in abnormal activation of signaling pathways within the cell, such as PI3K/AKT, 

RAS/MAPK, and STAT5. The continuous activation of these signaling pathways leads to uncontrolled cell division, prolonged cell 

survival, and inhibition of programmed cell death or apoptosis. Collectively, these are responsible for the pathogenesis (development 

of the disease) and leukemogenesis (the process of leukemia formation) of AML (Döhner et al., 2015). For this reason, several FLT3 

inhibitors targeting the FLT3-ITD and FLT3-TKD proteins have been developed, which are thought to be viable therapeutic targets in 

the treatment of AML (Stone et al., 2017; Perl et al., 2019). The efficacy of these inhibitors depends on their binding affinity to the FLT3 

receptor (Kiyoi, Kawashima & Ishikawa, 2019). Structural studies have shown that FLT3 exists in two conformational variants—active 

and inactive. The difference between them depends on the specific arrangement of three amino acid residues (Asp-Phe-Gly) in the 

activation loop (Mirza et al., 2024). FLT3 inhibitors are divided into two groups depending on how they interact with these 

conformations, namely, type I and type II. Based on their binding preferences, type I inhibitors (such as midostaurin, gilteritinib, and 

crenolanib) can bind to both the active and inactive forms of FLT3 at the ATP-binding site, which increases their inhibitory potential 

(Abbas et al., 2019).  
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In contrast, type II inhibitors such as quizartinib and sorafenib selectively target the inner pocket of the ATP-binding region but 

only in the inactive conformation of FLT3, resulting in better selectivity (Kiyoi, Kawashima & Ishikawa, 2019; Daver et al., 2019). 

Despite their therapeutic relevance, both types of inhibitors have many side effects, some of which are potentially fatal, such as 

perimyocarditis (Kalkan et al., 2025), GI hemorrhage, respiratory failure, sepsis, and septic shock (Jiang et al., 2025), cardiac failure, 

pancreatitis, pneumonia, renal impairment, cytopenia, heart rhythm problems (QT prolongation), and stomach problems. In addition, 

drug resistance has been observed in many patients (Mecklenbrauck & Heuser, 2022). Therefore, we aimed to identify FLT3 inhibitors 

with fewer side effects and a better safety profile. 

Compounds derived from many natural sources are considered necessary for their medicinal properties. Since ancient times, humans 

have used medicinal plants to treat various diseases. Unsurprisingly, many natural compounds show anticancer properties. Artemisia 

annua, a plant native to China and temperate regions of Asia, is used to treat malaria, fever, and digestive problems. Artemisinin, 

obtained from Artemisia annua, is of value in modern medicine (Septembre-Malaterre et al., 2020). Silymarin, obtained from Silybum 

marianum (Milk Thistle), a plant native to Mediterranean Europe, is used to treat liver diseases (Gillessen & Schmidt, 2020). Digitalis 

lanata, from southeastern Europe, provides digoxin, long used for heart failure and arrhythmia (Whayne, 2018). 

In the current era, it is possible to screen a large number of compounds in silico via molecular docking and ADMET analysis 

(absorption, distribution, metabolism, excretion, and toxicity), which has made new drug discovery more efficient (Lionta et al., 2014). 

In this study, we constructed a library of 2792 natural compounds from 19 medicinal plants, many of which exhibit anticancer 

properties. We evaluated these compounds via molecular docking methods at the active site of the FLT3 protein to determine which 

compounds could bind tightly. Then, we analyzed the selected top compounds using the ADMET model and subjected them to 

laboratory-based testing in real-life biology studies via simulations to verify their potential safety and efficacy as medications. In our 

analysis, we identified several natural compounds that effectively inhibited FLT3 compared with conventional drugs. These results 

have the potential to open a new horizon in AML treatment. 

 

2. MATERIALS AND METHODS 

2.1. Protein preparation 

The three-dimensional (3D) experimental tertiary protein structure of FMS-like tyrosine kinase 3 (FLT3, PDB ID Code: 6JQR), which is a 

drug target for our study, was obtained from the RCSB Protein Data Bank (PDB) in PDB format (Berman et al., 2000). The structure was 

resolved using X-ray diffraction at a high resolution of 2.20 Å (free R value: 0.213, observed R value: 0.181, and work R value: 0.179), 

with a molecular weight of 39.34 kDa (Amano, 2024; Kawase et al., 2019). From beginning to end, we prepared the target in BIOVIA 

Discovery Studio Visualizer 2024 software (BIOVIA, 2024) with all the metal ions, cofactors, and water molecules removed. Upon 

refining the protein structure, it underwent subsequent optimization, validation, and minimization via the GROMOS force field of the 

Swiss PDB Viewer (SPDV) v4.1.0. It was saved in PDB format (Guex et al., 2009). 

 

2.2. Compounds retrieval and preparation 

Phytocompounds are the chemical constituents contributing to the therapeutic effects of certain medicinal plants and formulations used 

for centuries for curing various diseases, and play an indispensable role in drug discovery. In this study, we used a curated database, 

namely, Indian Medicinal Plants, Phytochemistry and Therapeutics 2.0 (IMPPAT 2.0) (accessed on May 03, 2024, IMPPAT 2.0) (Vivek-

Ananth et al., 2023). Keywords used were "Azadirachta indica", "Bacopa monnieri", "Camellia sinensis", "Carthamus tinctorius", "Curcuma 

longa", "Ginkgo biloba", "Hypericum perforatum", "Moringa oleifera", "Mucuna pruriens", "Nigella sativa", "Origanum vulgare", "Panax ginseng", 

"Piper nigrum", "Psidium guajava", "Santalum album", "Withania somnifera", "Zingiber officinale", "Acorus calamus", "Aloe vera", 

"phytochemical constituents”, “bioactive compounds”, and different combinations thereof to obtain the compounds. We collected 2792 

compounds from 19 medicinal plants (Fig. 1), and excluded duplicate entries to maintain the accuracy of the dataset. The 3D structure 

and detailed information of each ligand were obtained from the PubChem database in SDF format (Kim et al., 2023). The compound 

library was prepared and optimized via OpenBabel software by energy minimization with the MMFF94 force field, and subsequently 

incorporating polar hydrogen atoms (O’Boyle et al., 2011). Finally, the ligands were merged into a single SDF file for ease of entry into 

the PyRx program (Dallakyan & Olson, 2015).  
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Fig. 1 The comparative distribution of compounds collected from 19 medicinal plants depicted in a radial bar chart. The segment size 

corresponds to the number of compounds collected, and a unique color distinguishes each plant species. 

 

2.3. Grid generation and active site recognition 

Discovery Studio was used to perform 6JQR analysis and establish the position of binding site residues. The receptor cavity recognized 

by Discovery Studio provides a reliable and comprehensive topological analysis of the protein. It allows the identification and 

quantification of binding site pocket residues, as well as the determination of volume, cavities, and channels. The server's prediction 

included many active pockets, and the initial binding site was identified based on its extensive surface coverage and size. To avoid 

blind docking, we used the receptor cavity in Discovery Studio and identified binding site residues to set up a grid box for virtual 

screening around the 6JQR protein (Atre et al., 2024). It is imperative to select the correctly predicted amino acid residue to ensure that 

the grid box in PyRx software encompasses the binding site of the target protein (Dallakyan & Olson, 2015). 

 

2.4. Virtual screening 

Structure-based virtual screening (VS) is a popular computational method in the early stages of drug design, discovery, and 

development. It is used by many pharmaceutical corporations and research teams (Razzaghi-Asl et al., 2018). This technique enables 

researchers to anticipate the best binding poses of a library of small compounds to specific macromolecules. PyRx 0.8 software is a 

dependable open-source VS program that is commonly used in CADD to screen vast libraries of compounds against an exact 

therapeutic target (Dallakyan & Olson, 2015). This study used PyRx's AutoDock Vina wizard to select compounds (n=2792) from 19 

medicinal plants to identify potential anticancer drug candidates with significant activity against the FLT3 receptors in acute myeloid 

leukemia. We transformed each ligand into an AutoDock ligand, loaded the produced protein into PyRx, and then converted it to a 

dockable PDBQT file. Exhaustiveness value was 8, the default value. The grid box's center coordinates were X: −25.09, Y: −0.46, and Z: 

−20.70, with dimensions of X: 37.1900, Y: 25.7513, and Z: 21.0501 angstroms (Å) around the 6JQR protein. The top 15 candidates were 

selected for further pharmacokinetic testing upon ranking the compounds by binding affinity (with the most negative being the 

highest) and analyzing their docking poses. These poses allowed the compounds to engage with specific residues inside the binding 
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site of the target receptor protein. Finally, we used Discovery Studio (BIOVIA, 2024) to manually inspect the binding interactions of the 

protein-ligand complexes that scored the highest. 

 

2.5. Pharmacokinetic property prediction 

The rate and time course of drug entry and excretion in the body depend mainly on four processes — Absorption, Distribution, 

Metabolism, and Excretion — abbreviated as ADME. In this study, the pharmacokinetic (PK) and drug-likeness (DLP) properties of 

small molecular compounds were evaluated using the widely used system called SwissADME (Daina, Michielin & Zoete, 2017). 

 

2.6. Toxicity investigation 

The ability of a substance to harm living organisms or their parts, such as cells and organs, is called the toxicity of that substance. Drug 

development typically fails in later stages because of this issue, making toxicological profile inspection a key step (Wang et al., 2015). 

Currently, computer-aided in silico testing is being used to assess chemical toxicity, implying animal trials are no longer necessary. 

Potential anticancer agent cytotoxicity, hepatotoxicity, carcinogenicity, mutagenicity, and immunotoxicity were evaluated via the 

pkCSM (https://biosig.lab.uq.edu.au/pkcsm/prediction) (Pires, Blundell & Ascher, 2015) and ProTox 3.0 (tox.charite.de/protox3) 

prediction algorithms (Banerjee et al., 2024). 

 

2.7. Molecular dynamics simulation 

Molecular dynamics (MD) simulations provide valuable information about biological motion by observing the stability, structural 

changes, and variations of protein and ligand complex formations, which helps in the analysis of crucial physiological processes 

(Ja’afaru et al., 2024; Alhumaydhi et al., 2021). We ran four rounds of molecular dynamics (MD) simulations on three protein‒ligand 

complexes and one control sample as a part of our investigation. The simulations were performed for up to 100 nanoseconds (ns) using 

the YASARA (version 24.4.10) dynamics software equipped with the Amber 14 force field (Krieger & Vriend, 2015; Wang et al., 2004). 

Upon cleaning and optimizing, including optimization of the hydrogen bond network, the docked complexes were centrally placed in a 

cubic simulation box, where periodic boundary conditions were applied, and solvated by TIP3P water molecules (Harrach & Drossel, 

2014). The cubic box size was 80 × 80 × 80 Å, and the distance between the box edge and the protein edge was 12.5 Å. The simulation 

system was set to 310 K, pH 7.4, and NaCl concentration 0.9% to simulate physiological conditions. First, energy minimization was 

performed using the Swiss PDB viewer to optimize the structure and eliminate steric conflicts. To calculate long-range electrostatic 

interactions, the Particle Mesh Ewald (PME) method was used (Essmann et al., 1995) while the short-range interactions of van der 

Waals and Coulomb interactions were examined using a cutoff radius of 8 Å. The simulations were conducted at a constant 

temperature and pressure using a Berendsen thermostat. Trajectory data for analysis were saved every 250 ps (Akash et al., 2023a). 

Topology files for ligands are auto-generated using General AMBER Force Field (GAFF) and AM1BCC charges. We examined a variety 

of parameters to assess the conformational stability of both the apoprotein and complex systems. These parameters included: RMSD, 

RMSF, radius of gyration, SASA, and H-bond interactions (Genheden & Ryde, 2015). 

 

3. RESULTS & DISCUSSION 

3.1. Virtual screening-based molecular docking 

Pharmaceutical research and development require knowledge of how small-molecule ligands recognize and interact with proteins. 

Molecular docking is one of the vital computational tool that allows scientists to analyze these binding processes. These include the 

process of ligand binding and the study of intermolecular interactions that help stabilize the ligand-receptor complex (Akash et al., 

2023b). Owing to successful molecular docking between the previously predicted active region of the FMS-like tyrosine kinase 3 (FLT3) 

receptor protein and a library of 2792 phytochemicals, we determined that the binding affinity varied from −2.5 to −10.9 kcal/mol. We 

evaluated the pharmacokinetic properties of 256 compounds with their docking scores ranging between −8.9 and −10.9 (see 

supplementary file (SM_1)). Of these, the top 15 compounds showing the most favorable pharmacokinetic properties are presented in 

Table 3. In addition, Table 1 summarizes their source, PubChem CID, compound name, binding affinity (kcal/mol), and average 

binding affinity. From this analysis, three were identified as the most promising lead candidates: Withanicandrin (−10.9 kcal/mol), 

17Beta−Hydroxywithanolide K (−10.1 kcal/mol), and Asperglaucide (−9.4 kcal/mol). Compounds with binding energy lower than −6.0 

kcal/mol are expected to exhibit activity against a protein (Chandra et al., 2022). Therefore, the higher binding affinities of these chosen 

compounds to our target protein, FLT3, indicate these compounds may show enhanced potency in ameliorating acute myeloid 

https://biosig.lab.uq.edu.au/pkcsm/prediction
file:///C:/Users/Admin/Downloads/tox.charite.de/protox3
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leukemia (AML). Notably, gilteritinib (binding affinity of −9.1), an orally accessible small-molecule inhibitor of FMS-like tyrosine kinase 

3, is administered to AML patients with FLT3 mutations. However, gilteritinib therapy has been associated with a modest increase in 

the incidence of serum aminotransferase, which can lead to acute liver injury and cause immunotoxicity. 

 

Table 1: A catalog featuring the top 15 compounds, detailing their plant sources, PubChem CIDs, names, binding affinities (kcal/mol), 

and average values. 

S.L. 

No. 
Source 

PubChem 

CID 

Compound 

Name 

Binding affinity (Kcal/mol) Avg. 

binding 

affinity 
1st 2nd 3rd 

1 Psidium guajava 91809632 Withanicandrin −10.9 −10.9 −10.9 −10.9 

2 Psidium guajava 44562998 17Beta-Hydroxywithanolide K −10.2 −10.2 −9.9 −10.1 

3 Panax ginseng 5281629 6-Deoxyjacareubin −9.9 −9.6 −9.6 −9.7 

4 Moringa oleifera 10026486 Asperglaucide −9.7 −9.2 −9.2 −9.4 

5 Panax ginseng 72307 sesamin −9.3 −9.3 −9.2 −9.3 

6 Ginkgo biloba 520461 Epsilon-Muurolene −9.2 −7.1 −7.1 −7.8 

7 Azadirachta indica 11334829 Nimbidiol −9.2 −9.2 −9.2 −9.2 

8 Carthamus tinctorius 5458878 Nb-p-Coumaroyltryptamine −9.2 −9.2 −9.2 −9.2 

9 Carthamus tinctorius 5458879 N-Coumaroyl serotonin −9.1 −9.0 −9.1 −9.1 

10 Azadirachta indica 189403 
12-Hydroxy-13-methylpodocarpa-

8,11,13-triene-3,7-dione 
−9.1 −9.2 −9.2 −9.2 

11 Ginkgo biloba 5281624 
6-(3,3-Dimethylallyl)-1,5-

dihydroxyxanthone 
−9.1 −9.0 −9.0 −9.0 

12 Carthamus tinctorius 119205 Matairesinol −9.0 −9.0 −8.9 −9.0 

13 Azadirachta indica 11119228 Nimbiol −9.0 −9.0 −9.0 −9.0 

14 Azadirachta indica 189728 
12-methyl-7-oxopodocarpa-8,11,13-

triene-13-carboxylic acid 
−9.0 −9.0 −9.0 −9.0 

15 Azadirachta indica 189726 Margolonone −9.0 −9.0 −9.0 −9.0 

Standard FLT3 drugs 

1  Synthetic 49803313 Gilteritinib −9.3 −8.9 −9.1 −9.1 

 

3.1.1. Protein‒ligand relations 

The coordination of weak or covalent connections in protein-ligand complexes is the most vital aspect in the development of a new 

drug. Measuring bonding distance, binding site, and protein-ligand interactions provided valuable insight into the relationship 

between the compound and the protein (Tahamid Tusar et al., 2025). We visualized the ligand‒protein docked complexes via the 

BIOVIA Discovery Studio Visualizer to increase comprehension of the intermolecular interactions between the selected compounds and 

the FLT3 monomer. The molecular interactions of the FLT3 monomer with the three most potent compounds and one control (existing 

drug)—Asperglaucide (CID:10026486), 17-beta-hydroxywithanoid K (CID: 44562998), withanicandrin (CID: 91809632), and gilteritinib 

(control) (CID: 49803313)—are presented, with the binding interaction patterns illustrated in both 2D and 3D formats in Fig. 2 to Fig. 3. 

Based on our findings, every molecule exhibited a wide range of bonding and nonbonding interactions with residues at the binding site 

or nearby. The main features of the interaction between protein and ligand are van der Waals attraction, pi-donor hydrogen bonding, 

and general hydrogen bonding. Understanding how ligands attach to proteins relies on all of these factors. Here, the asperglaucide 

molecule forms two conventional hydrogen bonds with the MET837 amino acid located in chain A; for this, it uses the hydrogen atoms 

HN2 (2.69 Å) and HN3 (2.63 Å) of its amide group. These relatively short bond distances indicate that these are very strong and 

favorable interactions. In addition to hydrogen bonding, electrostatic pi-anion interactions occur with ASP 811 (3.71 Å), where the side 

chain of the aspartate amino acid attracts the electron-rich system (pi system) of asperglaucide. The binding interface is further 

stabilized by extensive hydrophobic interactions. The interface also engages in pi‒pi stacking interactions with the aromatic residues 

PHE830 (3.78 Å), PHE621 (3.78 Å), and TYR842 (4.82 Å). Pi-alkyl interactions form with the aliphatic side chains of ALA620 (4.92 Å), 

ALA848 (5.39 Å), and ARG849 (5.12 Å), too, helping anchor the molecule in the binding site. This type of interaction can significantly 
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contribute to binding affinity and specificity. 17-Beta-Hydroxywithanoid K demonstrated one strong hydrogen bond (2.55 Å) between 

the ARG849 hydrogen and UNK1’s (ligand) oxygen. Multiple hydrophobic interactions, including pi-sigma interactions with TYR842 

(3.98 Å) and PHE621 (3.76 Å) and Pi-alkyl interactions with TYR572, PHE621, PHE830, and TYR842 (distances: 4.21–5.32 Å), have also 

been reported. 

 

 

Fig. 2 Intermolecular interactions between the FLT3 receptor protein and (a) asperglaucide and (b) 17-beta-hydroxywithanoid K, 

showing the binding pose (middle), 3D binding interaction patterns (left), and 2D interaction patterns (right). 

 

Conversely, withanicandrin contributed to the establishment of three hydrogen bonds with protein residues, including two strong 

bonds with GLN575 (2.36 Å and 3.08 Å) and one very short bond with ARG849 (2.28 Å), pointing to highly favorable polar interactions. 

Additionally, a hydrophobic alkyl interaction occurs between ARG849 and UNK1 (withanicandrin) (4.34 Å). The ligand gilteritinib 

(control) interacts with the protein target through weak interactions, suggesting suboptimal binding characteristics. ASP811, PHE830, 

and GLU573 form three carbon-hydrogen bonds, but their distances (3.31−3.52 Å) are beyond the ideal range for strong hydrogen bond 

formation. The hydrophobic interactions are predominantly weak, with pi-sigma and pi-pi stacking only close to the upper limit of the 

optimal distance. The only intermediate stabilizing interaction is a pi-alkyl contact with ARG849 (3.89 Å). This pattern suggests that 

binding may be transient or low-affinity, and that stronger interactions are needed to improve stability and binding affinity. 
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Fig. 3 Intermolecular interactions between the FLT3 receptor protein and (c) withanicandrin and (d) gilteritinib, showing the binding 

pose (middle), 3D binding interaction patterns (left), and 2D interaction patterns (right). 

 

In our analysis, all the selected ligands formed interactions with the FLT3 protein primarily via hydrogen bonds. Fig.4 shows the 

regions involved in hydrogen bond donation and acceptance during the three-dimensional interactions between the FLT3 protein and 

the three best-selected compounds and one existing drug (control). Hydrogen bonds play an indispensable role in defining the strength 

and specificity of the interaction between a protein and its ligand. As shown in Table 2, analysis revealed that all the ligands also had 

strong hydrophobic interactions with the FLT3 receptor. 

 

Table 2: Intermolecular contacts between the FLT3 protein and bound ligands. 

Compound Interaction Type Residue(s) 
Details  

(Distance in Å) 

Asperglaucide 

Hydrogen Bond MET837 (Chain A) HN2 – 2.69 Å, HN3 – 2.63 Å 

Electrostatic (P-Anion) ASP811 3.71 Å 

Pi-Pi Stacking PHE830, PHE621, TYR842 3.78 Å, 3.78 Å, 4.82 Å 

Pi-Alkyl ALA620, ALA848, ARG849 4.92 Å, 5.39 Å, 5.12 Å 

17-Beta-

Hydroxywithanoid K 

Hydrogen Bond ARG849 – UNK1 (oxygen) 2.55 Å 

Pi-Sigma TYR842, PHE621 3.98 Å, 3.76 Å 

Pi-Alkyl 
TYR572, PHE621, PHE830, 

TYR842 
4.21–5.32 Å 

Withanicandrin 
Hydrogen Bond GLN575, ARG849 2.36 Å, 3.08 Å, 2.28 Å 

Alkyl (Hydrophobic) ARG849 – UNK1 4.34 Å 

Gilteritinib (Control) 

Carbon‒Hydrogen Bond ASP811, PHE830, GLU573 3.31–3.52 Å 

Pi-Sigma/Pi-Pi Stacking General (weak) 
At the upper limits of favorable 

distances 

Pi-Alkyl ARG849 3.89 Å 
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Fig. 4 Areas engaged in hydrogen bond donation and acceptance throughout the three-dimensional interactions between the FLT3 

protein and the three best-selected compounds and one existing drug: (a) asperglaucide, (b) 17-beta-hydroxywithanoid K, (c) 

withanicandrin, and (d) gilteritinib (control). 

 

3.2. ADME properties 

Conducting in silico pharmacokinetic analysis is essential in modern drug discovery because it allows for the evaluation of the 

physicochemical characteristics of candidate compounds while saving time and money (Islam et al., 2024). The pharmacokinetic 

analyses via SwissADME revealed that the pharmacokinetic and pharmacodynamic properties of the top 256 compounds were 

analyzed after molecular docking, as detailed in the Supplementary file (SM_2). Assessing the pharmacokinetic properties of the top 15 

compounds considering their physicochemical characteristics, water solubility, lipophilicity, pharmacokinetics, drug-likeness, and 

medicinal chemistry, allowed determining their suitability as drug candidates (Table 3). The evaluation revealed that all the 

compounds fully adhered to Lipinski’s rule of five except for the control, suggesting significant potential for oral bioavailability 

(Lipinski, Dominy & Feeney, 1997). The compounds were all considered having adequate bioavailability because they had molecular 

weights less than 500 g/mol, an acceptable number of hydrogen bond donors (ranging from 0 to −3), and a moderate number of 

acceptors (ranging from 2 to −6).  Additionally, they all included between 1 and 13 rotatable bonds. The ideal range for effective 

membrane permeability was 2.03 to −3.73 for the log Po/w (iLOGP) values. The water solubilities of the compounds ranged from −3.52 

to −5.0, with the majority being moderately to highly soluble in biological settings, according to the Log S (ESOL) values. 

High gastrointestinal (GI) absorption was predicted for all compounds, suggesting that they would be suitable for oral drug 

formulations. Nine compounds that were not our primary focus showed evidence of the ability to cross the blood-brain barrier (BBB). 

The synthetic accessibility scores of these compounds ranged from 2.43 to −6.45, suggesting that their synthesis was primarily 

moderately complicated. Other drug-likeness criteria, such as the Ghose, Veber, Egan, and Muegge standards, were effectively met for 

most compounds, with no violations (details not mentioned). However, some compounds, such as CID: 10026486, CID: 91809632, and 

CID: 44562998, showed relatively high synthetic accessibility scores, suggesting relatively high synthesis complexity. Among all the 

candidates, CID: 10026486, CID: 91809632, and CID: 44562998 were identified as the most promising, as they exhibited favorable 
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pharmacokinetic properties. These compounds did not show any Lipinski violations, exhibited moderate Log Po/w (iLOGP) values 

(3.49, 3.33, and 3.73, respectively), satisfactory aqueous solubility (Log S) values (−4.5 and −4.1), and synthetic accessibility scores (3.31, 

6.45, and 6.65, respectively). Despite neither molecule being permeable to the blood-brain barrier, their superior gastrointestinal 

absorption and adherence to drug-likeness criteria render them compelling candidates for further exploration. For reference, the 

standard FLT3 inhibitor gilteritinib (CID: 49803313) demonstrated a higher molecular weight (552.71 g/mol) and two Lipinski 

violations, along with a Log S value of −5.08, showing comparatively lower solubility and slight deviations from ideal drug-like 

properties. 

 

Table 3: Analysis of the drug-likeness and pharmacokinetic properties of 15 compounds identified via the SwissADME server. 
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S.L CID 

1 10026486 444.52 33 18 13 4 2 3.49 −4.95 High No 
Yes; 0 

violation 
3.65 

2 119205 358.39 26 12 6 6 2 2.47 −4.06 High No 
Yes; 0 

violation 
3.3 

3 5281629 310.30 23 14 0 5 2 2.93 −4.56 High No 
Yes; 0 

violation 
3.57 

4 72307 354.35 26 12 2 6 0 3.46 −3.93 High Yes 
Yes; 0 

violation 
4.12 

5 520461 354.35 26 12 2 6 0 3.46 −3.93 High Yes 
Yes; 0 

violation 
4.12 

6 91809632 468.58 34 0 2 6 1 3.33 −4.5 High No 
Yes; 0 

violation 
6.31 

7 44562998 470.60 34 0 2 6 3 3.73 −4.1 High No 
Yes; 0 

violation 
6.45 

8 11334829 274.35 20 6 0 3 2 2.14 −4.37 High Yes 
Yes; 0 

violation 
3.13 

9 189403 286.37 21 6 0 3 1 2.36 −3.72 High Yes 
Yes; 0 

violation 
3.15 

10 11119228 272.38 20 6 0 2 1 2.86 −4.81 High Yes 
Yes; 0 

violation 
3.16 

11 189728 300.39 22 6 1 3 1 2.43 −4.82 High Yes 
Yes; 0 

violation 
3.35 

12 189726 314.38 23 6 1 4 1 2.03 −3.74 High Yes 
Yes; 0 

violation 
3.34 

13 5281629 310.30 23 14 0 5 2 2.93 −4.56 High No 
Yes; 0 

violation 
3.57 

14 5281624 296.32 22 14 2 4 2 3.1 −5 High Yes 
Yes; 0 

violation 
3.19 
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15 5458878 306.36 23 15 6 2 3 2.21 −3.52 High Yes 
Yes; 0 

violation 
2.43 

Standard FLT3 drugs 

1 
49803313 

(Gilteritinib) 
552.71 40 12 9 7 4 4.15 −5.08 High No 

No; 2 

violations 
4.73 

 

3.3. Toxicological evaluation 

Detrimental side effects are one of the leading causes of drug development failure in the early stage, and drug toxicity is a key concern 

in the medical industry (Lipinski et al., 2001). The degree to which a chemical may damage living things or their constituent parts, such 

as cells and organs, is called its toxicity. Therefore, early identification of toxicity is highly beneficial (Lagorce et al., 2017). We analyzed 

the toxicological properties of 256 compounds (see supplementary file SM_3); Table 4 highlights potential toxicity outcomes of all the 

examined molecules. Among the compounds evaluated, asperopleaucide (CID: 10026486) is noteworthy. Asperopleaucide selectively 

inhibits hERG II, which has potential cardiovascular applications. Its ORAT value (1.961) is within the acceptable range, suggesting its 

acute toxicity is tolerable. It is free of hepatotoxicity, carcinogenicity, immunotoxicity, and mutagenicity. Its maximum tolerated dose 

(MTD) is −0.541, suggesting better tolerability than the other plant compounds used in this study. 17Beta-hydroxywithanolide K (CID: 

44562998) is similarly promising, as it has an entirely safe toxicity profile. This compound did not yield negative results in any toxicity 

test, including AMES, hepatotoxicity, and mutagenicity. Although its MTD (−0.701) is slightly lower than that of asperopleaucide, its 

overall safety profile makes it ideal for situations where few side effects are common. These plant compounds have shown better safety 

profiles than the reference drug gilteritinib, which is known for the induction of immunotoxicity (Dugan et al., 2021). Although 

withanicandrin is nontoxic, its low MTD value (−0.797) limits its potential. For this reason, this compound is still a potential drug 

candidate. 

 

Table 4: Evaluation of the toxicity profiles induced by the three potential hit molecules and standard FLT3 drugs. 

Compound 

CID 

Phytochemical 

Name 

pkCSM ProTox 
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10026486 Asperglaucide No −0.541 No Yes 1.961 No 
Inactive 

0.70 

Inactive 

0.66 

Inactive 

0.99 

Inactive 

0.70 

44562998 
17Beta−Hydroxy

withanolide K 
No −0.701 No No 2.3 No 

Inactive 

0.88 

Inactive 

0.52 

Inactive 

0.54 

Inactive 

0.88 

91809632 withanicandrin No −0.797 No No 2.873 No 
Inactive 

0.79 

Active 

0.57 

Active 

0.99 

Inactive 

0.72 

Standard FLT3 drugs 

49803313 Gilteritinib No −0.112 No Yes 2.429 No 
Inactive 

0.61 

Inactive 

0.59 

Active 

0.80 

Inactive 

0.58 

 

3.4. Molecular dynamics simulation 

To test their dynamic insight, stability, and binding pocket for proteins at the atomic level, which provides insights for drug discovery, 

molecular dynamics simulations were performed for 100 ns of the four compounds. This study used several evaluation metrics 

collected from MD trajectory data, such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Hydrogen 

Bonding Count, Solvent Accessible Surface Area (SASA), and Radius of Gyration (RG). 

 

3.4.1. RMSD 

We performed root mean square deviation (RMSD) analysis of the molecular dynamics simulation, which revealed insights into the 

structural stability, conformational dynamics, and protein binding ability of the studied systems. The RMSD plots of three test 
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compounds, CID 10026486 (Asperglaucide), CID 44562998 (17Beta-Hydroxywithanolide K), and CID 91809632 (Withanicandrin), were 

observed to measure their atomic position deviations from the initial reference structure. In this analysis, shown in Fig. 5, the X-axis 

specifies time (0 to 100 ns), which displays the progress of the simulation. On the other hand, the Y-axis expresses the RMSD (0.5 to 2.5 

Å), which provides a quantitative value of the positional change of the atoms with respect to the initial reference structure. In the MD 

simulation, a constant RMSD value with slight variation confirms a converged system. High RMSD fluctuation typically means that the 

ligand loses its strong interaction integrity with the protein and that the protein's binding site shifts or leaves the binding pocket. In 

contrast, low fluctuation means that the protein's binding pocket is relatively stable. Moreover, a lower RMSD value indicates that the 

ligand remains compatible with the binding site and maintains a more stable conformation within the binding pocket over time, 

whereas a higher RMSD value implies that the ligand−protein combination has poorer stability and a weaker binding affinity 

(Hollingsworth & Dror, 2018; Stumpfe, Geppert & Bajorath, 2010). 

 

 
Fig. 5 Root mean square deviation (RMSD) trajectories (in Ångströms) of three experimental samples, 10026486 (black), 44562998 (red), 

91809632 (green), and the control system 49803313 (blue), over the simulation time (100 ns).  

 

All the samples presented comparably low RMSD values, ranging from 0.403 to 0.559 nm, indicating stable initial structures. 

However, the control CID:49803313 (gilteritinib) began with a slightly higher RMSD than the experimental sets did, signifying 

detrimental starting compatibility or greater preequilibrium with the target protein. Throughout the simulation, the control path 

showed a slowly increasing RMSD, with a high point of 1.36 Å at 14 ns, followed by a temporary decrease and recovery to 1.54 Å at 26.2 

ns. Even though it converged at 1.39 Å at 27.8 ns, this fluctuation may indicate movement into or out of the binding pocket or 

temporary instability. Furthermore, a noticeable peak at 1.82 Å at 50 ns and the largest RMSD of 1.87 Å at 92 ns hint at long-term 

conformational drifts linked to weakened ligand-protein interactions. Overall, the control group exhibited weak to moderate binding 

affinity and dynamic instability in the binding pocket, indicated by a high average RMSD value of 1.541 Å, although it reached a 

plateau phase in the later stages of the simulation. Table 5 depicts the mean values of different samples and the control. 

Withanicandrin had a more stable RMSD profile with an average value of 1.326 Å. However, it exhibited considerable deviations at 12.2 

ns (0.82–1.27 Å), 44.9 ns (1.17–1.63 Å), and 66.5 ns (1.31–1.75 Å); these deviations preceded recovery and stabilization tendencies, 

indicating dynamic flexibility in the binding site. The maximum observed deviation of 1.82 Å at 95.8 ns is within the framework of 

transient behavior and not of continual instability, reminiscent of a general moderate to strong binding profile with occasional 

conformational fluctuations. Asperglaucide had auspicious outcomes. The lowest average RMSD value for all the compounds was 1.14 

Å, and the peak decreased to 0.903 Å at 54.2 ns, followed by a consistent increase to a plateau of 1.37 Å at approximately 67.4 ns and a 

consistent decrease to a value of roughly 1 Å at 86.2 ns, suggesting the reclamation of a stable conformation. These results demonstrate 

a high capacity for readjustment and a generally stable connection with the protein. 17 Beta−hydroxywithanolide K also exhibited 

relatively low fluctuations, with an overall average RMSD of 1.25 Å and a stable path until the first 50 ns; this ligand continued to 

possess better conformational stability in the binding pocket. Slight deviations followed after 50 ns at 57.6 ns, 67.9 ns, and 83.3 ns, but 

were within acceptable values with recovery. The RMSD was well within its minimum (0.401 Å) and maximum (1.715 Å) values, so 
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there were uniform binding interactions with minimal disturbance, suggesting improved affinity and structural fit. Regarding binding 

site stability, structural stability, and interaction resistance, all the experimental ligands outperformed the control, according to the 

combined RMSD data. Of these compounds, asperglaucide was the most stable and promising candidate. It was observed to have high 

binding affinity, a stable equilibrium, and negligible variation. 

 

3.4.2. RMSF analysis 

Root Mean Square Fluctuation (RMSF) is a measurement method used to analyze the local dynamics or movements of amino acid 

residues and ligand atoms in proteins at different temperatures and pressures. It is beneficial in determining individual atom flexibility 

and provides information about ligand binding, which affects the structural flexibility of the entire protein. Higher RMSF values 

indicate greater flexibility and potential destabilization, whereas lower values indicate reduced motion and greater stability of the 

protein-ligand complex (Song et al., 2024). The RMSF values of the control gilteritinib (blue) and the experimental ligands 

asperglaucide (black), 17beta−hydroxywithanolide K (orange), and withanicandrin (green) were confirmed. RMSF value, plotted on the 

y-axis in Fig. 6(a), is suggestive of the degree of atomic fluctuation and is expressed in units of angstroms (Å). Residues 571 to 951 are 

on the x-axis, matching the protein's amino acid sequence. The evaluation of local flexibility across the protein's terminal regions is 

made possible by this range, which extends from the N-terminal region (near residue 571) to the C-terminal region (near residue 951). 

Fig. 6(a) shows that among the four systems analyzed, the lowest mean RMSF of 0.944 Å and standard deviation of 0.375 Å were shown 

by asperglaucide, indicating that it gives the protein the maximum structural stability. In this compound, residue 651 (2.723 Å) 

fluctuated the most, followed by residues 624 (1.960 Å), 654 (1.954 Å), 618 (1.935 Å), and 622 (1.923 Å). These residues most likely live in 

loop sections or segments exposed to the surface, which maintain some mobility even when the protein is ligand−bound, although with 

less fluctuation than in the unbound state. A mild increase in flexibility is observed in the compound 17Beta-hydroxywithanolide K, as 

demonstrated by a slightly higher average RMSF of 1.020 Å with a standard deviation of 0.421 Å. 651 (2.678 Å), 781 (2.593 Å), 633 (2.454 

Å), 608 (2.289 Å), and 630 (2.222 Å) are the most frequently fluctuating residues in this system. They suggest regions of the protein that 

might change their conformation in response to ligand interactions, which could impact binding-induced fit processes. A comparable 

average RMSF (Table 05) of 1.010 Å and a standard deviation of 0.406 Å were also shown by Withanicandrin, which had the most 

mobile residues at 781 (2.635 Å), 651 (2.412 Å), 633 (2.313 Å), 630 (2.192 Å), and 571 (1.991 Å). These high-fluctuation locations that 

overlap with 17Beta−Hydroxywithanolide K, Withanicandrin complexes suggest these areas are crucial for allosteric transitions or 

ligand engagement and are structurally sensitive. On the other hand, the highest RMSF value of 2.791 Å, the mean value of 0.992 Å, and 

the highest standard deviation of 0.430 Å were recorded for the control compound gilteritinib, all of which were located at residue 

number 651. This shows that the absence of ligand binding, especially in areas frequently thought to be the most mobile, leads to 

greater flexibility, such as residues 571, 633, 651, 652, and 781. Larger conformational variation and higher entropy within terminal 

areas are made possible by these intensified fluctuations, which point to a lack of stabilizing connections in the unbound state. 

According to a thorough RMSF investigation, ligand binding stabilizes the overall protein structure by reducing the amplitude of 

fluctuation in important dynamic areas in all four systems. With the largest RMSF of each system, residue 651 is a crucial hotspot of 

flexibility and is therefore a possible target location for ligand-induced stabilization. Other residues, such as residues 781, 633, and 630, 

also frequently fluctuate, suggesting that they might be components of a functional site or flexible domain that ligands influence. 

 

3.4.3. Rg analysis 

A structural characteristic called the radius of gyration (Rg) measures how compact a macromolecule, such as a protein or polymer, is 

overall. Rg is frequently used to evaluate the folding behavior, conformational stability, and structural alterations of biomolecules over 

time. Low Rg value indicates: The molecule is globular, compact, or firmly folded. Also, these findings imply robust intramolecular 

connections and structural stability and appropriate folding (in globular proteins). A high Rg score indicates the molecule is stretched, 

loosely packed, or partially unfurled(Newcomer, Lewis & Quiocho, 1981; Hong & Lei, 2008). As shown in Fig. 6(b), the RG graph tracks 

signal responses for three ligand samples and one control across a 100 ns time span at 0.1 ns intervals, providing a comparative 

investigation of ligand-protein interactions. The 1001 data points in each data set reveal high temporal. All the ligand samples showed 

consistent signal patterns over time that closely resembled those of the control. According to the data, the control gilteritinib had the 

highest mean response (19.761 Å), followed by asperide (19.574 Å), 17Beta-hydroxywithanolide K (19.646 Å), and withanicandrin 

(19.709 Å). The ligand was highly stable, as illustrated by the continuously low standard deviations of 0.078 Å (Control), 0.072 Å 

(Withanicandrin), 0.061 Å (17Beta-hydroxywithanolide K), and 0.073 Å (Asperglaucide). To further support the consistency of the 
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a b 

c d 

interactions, the response range was tight for all samples, with values ranging from 0.380 Å to 0.464 Å. In terms of average signal and 

dynamic behavior, withanicandrin prominently showed the closest alignment to the control, implying that the compound caused a 

conformational or interaction state most akin to the native protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Analysis of (a) root mean square fluctuations, (b) radius of gyration, (c) solvent accessible surface area, and (d) hydrogen bonds 

of asperglaucide, 17-beta-hydroxywithanolide K, withanicandrin, and the control based on a 100 ns MD simulation. 

 

3.4.4. SASA analysis 

Solvent accessible surface area (SASA) measures the exposed surface area of a molecule that is accessible to solvent molecules. SASA 

provides insight into the level of solvent exposure and the interactions that occur between a biomolecule and its surroundings. 

Fluctuations in SASA denote dynamic changes in protein folding or unfolding, ligand binding or unbinding, and overall protein-ligand 

interaction. For example, an increase in SASA can imply a protein complex unfolding and an increase in the available surface area of 

the protein complex. We summarized the results of all five analyses (RMSD (Å), RMSF (Å), Rg (Å), SASA (Å²), and H−Bond) in Table 5. 

As seen in Fig. 6(c), the average SASA of our test samples was marginally lower than that of Gilteritinib, suggesting a degree of 

structural compaction or decreased solvent exposure because of the samples being bound to their ligand. We also noticed that there are 

no abrupt changes or frequent strong downtrends in SASA, implying ligand binding or protein structural compaction, with less surface 

area exposed to the solvent. We did not find any abrupt changes or strong trends in the SASA curves for any of the four compounds, 

confirming the simulation's structural stability. Notably, 17Beta-Hydroxywithanolide K showed the least volatility over time, 

suggesting that it is the most stable and securely bonded complex. Asperglaucide on the other hand exhibited increased variance, 

which may indicate partial exposure or temporary structural changes. 

 

3.4.5. Hydrogen bond analysis 

Hydrogen bond analysis provided insight into the stability and intermolecular and intramolecular interactions of biomolecules, and the 

results are shown in Fig. 6(d). Our analysis revealed that hydrogen bonds formed before the simulation stage, as all the experimental 

compounds (Asperglaucide, 17Beta-Hydroxywithanolide K, and Withanicandrin) and the control (Gilteritinib) hydrogen bond values 

increased by the 15 ns mark. This indicates that the ligand created complementarity of its binding pocket for the target protein and 

made stable interactions. The results also suggest that, in the middle stage of the simulation (40−60 ns), the bond values slightly 

decreased, suggesting that both ligand destabilization has occurred and the ligand moved out of the binding pocket, resulting in a low 
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interaction of the ligand–protein complex. The rest of the simulation time maintains a stable hydrogen bonding pattern for all the 

ligands. The mean values of the experimental samples are 542.46 (Asperglaucide), 538.87 (17Beta−Hydroxywithanolide K), 538.58 

(Withanicandrin), and 531.57 (Gilteritinib). Asperglaucide has the highest mean value, indicating that this ligand is more stable and has 

the highest binding potential compared with the other two experimental ligands and the control. 

 

Table 5: Summarizing the mean values of the control (49803313) and the three experimental samples (10026486, 44562998, 91809632) for 

the five analyses, RMSD (Å), RMSF (Å), Rg (Å), SASA (Å²), and H−Bond. 

Analysis 
10026486 

(Asperglaucide) 

44562998 

(17Beta−Hydroxywith

anolide K) 

91809632 

(Withanicandrin) 

Control 49803313 

(Gilteritinib) 

RMSD (Å) 1.135 1.252 1.326 1.541 

RMSF (Å) 0.944 1.020 1.010 0.992 

Rg (Å) 19.574 19.646 19.709 19.761 

SASA (Å²) 14.411 14.540 14.575 14.665 

H−Bond 542.46 538.87 538.58 531.57 

 

4. CONCLUSION 

The main objective of our study was to explore the potential of natural compounds as FLT3 inhibitors in the treatment of acute myeloid 

leukemia (AML). Considering the side effects and drug resistance issues associated with current FLT3 inhibitors, such as gilteritinib, we 

constructed a library of 2792 natural compounds collected from 19 medicinal plants. We identified three compounds — asperglaucide, 

17beta-hydroxywithanolide K, and withanicandrin — as the most promising FLT3 inhibitors using molecular docking, ADMET 

analysis, and 100-nanosecond molecular dynamics simulations. The efficacy and safety of the drugs were verified using a combination 

of molecular docking, ADMET analysis, and molecular dynamics (MD) simulations. Toxicity assessments conducted using ProTox and 

pkCSM platforms showed these compounds were nontoxic and did not exhibit hepatotoxic, mutagenic, or carcinogenic effects. In 

addition, SwissADME analysis exposed that all three compounds had high gastrointestinal absorption, indicating their oral 

bioavailability and potential for therapeutic application. Our study results suggest that asperglaucide and two compounds could be 

used as alternative FLT3 inhibitors for the treatment of AML. However, further in vitro and in vivo studies are needed to confirm the 

efficacy and safe use of these compounds. This study may open a new horizon in the treatment of AML, especially where current drugs 

have limitations. 

 

Abbreviation Full form 

AML  Acute Myeloid Leukemia 

FLT3  FMS-like tyrosine kinase 3 

RCSB PDB Research Collaboratory for Structural Bioinformatics Protein Data Bank 

VS  Virtual Screening 

ADME  Absorption, Distribution, Metabolism, and Excretion 

PDBQT  Protein Data Bank, Partial Charge (Q), & Atom Type (T) 

SDF  Structured Data File 

RMSD  Root Mean Square Deviation 

RMSF  Root Mean Square Fluctuation 

Rg  Radius of gyration 

SASA  Solvent Accessible Surface Area 
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