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ABSTRACT 

The aim of the present study is to investigate in silico analysis of Pinus Roxburghii 

plant's photo component for the disease of non-small-cell lung cancer (NSCLC). 

We observed that many people have problems like lung cancer, and they were 

treated with synthetic medicine, which is already made from chemical 

compounds, and so for this study, we are targeting the plant which is in INDIAN 

Tropical forests. That plant's bark contains various chemicals that have been used 

to prevent a disease like lung cancer. In this work, we use various In Silico tools 

for many testing we use PubChem Database to obtain the details of the chemical 

components of the plants like chemical structures, properties, and other relevant 

data for small molecules, etc., with the help of PubChem we download the ligand 

and protein of the disease. After that, we use I gem Dock for docking the ligand 

and protein interaction. Then, we use VEGA QSAR for mutagenicity, 

carcinogenicity, Toxicity, etc. Then, ADMET/ADME tools are used to predict 

compounds' absorption, distribution, metabolism, excretion, and toxicity. After 

that, we use the Lipinski rule of five. After performing all these methods, I found 

that the plant's Bark compound is highly able to interact with the Disease protein 

it is shown the inhibition is the same as Drugs that are available in the market.  

 

Keywords: Pinus Roxburghii, In Silico, QSAR, ADMET, Docking. 

 

 

1. INTRODUCTION 

Cancer is a group of various Diseases characterized by the uncontrolled growth of 

cells and the spread of abnormality in the body. Those cells affect normal tissues 

and organs and can also spread to other parts of the body through the 

bloodstream or lymphatic system, a process known as metastasis (Hanahan and 

Weinberg, 2011). There are many different types of cancer, and they are generally 

classified according to the part of the body in which they start. Some of the most 

common types of cancer include Lung Cancer, Breast Cancer, Skin Cancer, 

Prostate Cancer, and Colorectal Cancer, Other less common types of cancer 

include pancreatic cancer, ovarian cancer, cervical cancer, bladder cancer, kidney 

cancer, and liver cancer, among others (Vogelstein et al., 2013; Soria et al., 2018). 

Non-small-cell lung cancer (NSCLC) is the type of Lung cancer that causes 85% of 

the share as compared to others.  

According to the American Cancer Society, in 5 years, the survival rate for the 

NSCLC is about 25% it is likely that people without the disease to live for at least 
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5 years after completing diagnosis. One of the mechanisms of resistance to treatment that has been identified in NSCLC is the 

"spared" mechanism. This mechanism refers to the ability of cancer cells to survive treatment by avoiding or resisting the effects of 

chemotherapy or targeted therapy drugs (Reck et al., 2016). Because of these chemical-based medicines and other drugs, the patient 

has reactions also. For the alternative approach, we go through the Natural Option for medicine after reading many research papers 

and reviews, I found many plants from the Indian Territorial places like Uttarakhand, Kashmir, Nepal etc (Futreal et al., 2004). 

From the reviews, I selected the plant Pinus Roxburghii, also known as Chir Pine or Long leaf Pine, is a species of pine. Which is 

located in the Himalayas and commonly found in India, Pakistan, and Nepal (Kaushik et al., 2012; Kumar et al., 2012).  

It is a medicinal plant and as per reviews and further studies, it gives various many activities like anti-microbial, anti-bacterial, 

anti-carcinogenicity, etc. We choose the methods for our work in silico analysis where we select various tools like PubChem, IGEM 

Dock, VEGA QSAR, ADMET/ADME, etc. These tools are free to access for all. Each tool has different functions and the operative's 

methods will also be different. We check ligand vs. protein interaction, Toxicity, carcinogenicity, and Lipinski rule of five. Based on 

the computational tools, we combine all the work and go through Drug discovery, and we use this study to conclude that the taken 

sample or ligand of the plant, Standard drugs that are available in markets are compared with protein of Lung cancer (Reck et al., 

2016). 

 

2. MATERIAL AND METHODOLOGY  

Literature search 

I use databases like PubMed, Scopus, Web of Science, and Google Scholar to find scientific material. After the entire evaluation 

process has been done, select databases pertinent to the study topic and the numerous parameters that I have decided to include in 

my study. 

 

Selection of phytocompounds 

GC-MS is a Gas Chromatography-Mass Spectrometry a combined technique to separate and quantify the compounds from any 

sample for characterization purposes. This present study was carried out by using data from a GC-MS study that was performed by 

(Satyal et al., 2013; Bhardwaj et al., 2022; Thapa et al., 2018).  

 

Ligand Library  

An enormous amount of data about chemical nomenclature, chemical structures, identifiers, physical, chemical, and biological 

properties, patents, health, safety, toxicity data, and other descriptors can be found in the open chemical structure database known 

as PubChem®. The use of various programmatic access points to accomplish virtually automated screening of chemical compounds 

makes the PubChem® database valuable information in the drug development process. Additionally, this database enables users to 

obtain PubChem® data files in a variety of formats and upload them to local computing resources, allowing data integration 

between PubChem® and other resources like web browsing tools (Xie XQ, 2010).  

The following information will be gathered from this database: The PubChem® ID, the molecular formula, the molecular 

weight, the CAS (Chemical Abstracts Service) no., the EC (European Community) no., and the canonical SMILE (Simplified 

Molecular-Input Line-Entry) structures. Using a translator program (https://cactus.nci.nih.gov/translate/), the .sdf file of each chosen 

phytocompound will be converted to a .pdb file, which will then be used as input while doing docking interaction analysis (Yu et 

al., 2020). 

 

Lipinski Rules of Five, Toxicity, Carcinogenicity & Mutagenicity prediction  

Lipinski's rule of five, also known as Lipinski's rule, is a set of guidelines used to determine the drug-likeness of a molecule. It was 

developed by Christopher Lipinski in 1997 and is based on the observation that most orally administered drugs have specific 

physicochemical properties that allow them to be absorbed and distributed throughout the body. According to Lipinski's rule, a 

molecule is likely to have good oral bioavailability and is a drug candidate if it meets the following criteria: Molecular weight (MW) 

≤ 500, octanol-water partition coefficient (LogP) ≤ 5, hydrogen bond donors (HBD) ≤ 5, hydrogen bond acceptors (HBA) ≤ 10. These 

rules were derived from the analysis of more than 2000 drugs and are, in many cases, a good predictor of oral bioavailability.  

It is important to note that Lipinski's rule is not a strict code, but rather a guideline. There are many examples of drugs that 

break one or more of these rules but are still effective. Therefore, Lipinski's rule should be used as a tool to help identify potential 

drug candidates rather than as a definitive decision tool (Lipinski, 2000). VEGA is a freely available web platform that includes a 

series of QSAR (quantitative structure-activity relationship) models that can be accessed to predict the toxicity of selected 
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phytocompounds (Benfenati et al., 2013). This tool is easily installed and can be used in any operating system supporting JAVA. 

Users can easily use this program as a series of different models after selecting an SMILE structure or adding a chemical structure as 

an input file (Kumar et al., 2019).  

Six models (mutagenicity (Ames test) CONSENSUS model 1.0.3; carcinogenicity model (CAESAR) 2.1.9; developmental toxicity 

model (CAESAR) 2.1.7; Table 3) are selected to conduct this study, which accounts for different toxicities such as for example 

mutagenicity, carcinogenicity and as toxicity to select a potent non-toxic compound. These models are used to screen compounds 

for drug design/development in silico. Non-toxic, non-mutagenic and non-carcinogenic compounds were filtered from the Ligand 

Library and we also perform various parameters such as skin sensitization model (CEZARO) (version 2.1.6), skin sensitization 

model (IRFMN/JRC) (version 1.0.0), hepatotoxicity model (IRFMN) (version 1.0.0), Whole Body Elimination Half-Life (QSARINS) 

(version 1.0.0), Fish Acute (LC50) Toxicity classification (SarPy/IRFMN) (version 1.0.2), Fish Acute (LC50) Toxicity Model 

(KNN/Read-Across) (version 1.0.0), LogP Model (Meylan/Kowwin) (Version 1.1.4), LogP Model (MLogP) (Version 1.0.0), LogP 

Model (ALogP) (Version 1.0.0), Water soluble model (IRFMN)) (version 1.0.0), Skin Permeation (LogKp) Model (Potts and Guy) 

(Version 1.0.0), Skin Permeation (LogKp) Model (Ten Berge) (Version 1.0.0), (Computer Kernel-Version: 1.2. 8) (Benfenati et al., 

2013). 

     

Target selection for docking study 

In the next experiment, a total of 2 non-small cell lung cancer (NSCLC) proteins were targeted to investigate the effectiveness of the 

phytoconstituents as its drug molecule. Different proteins are selected based on their virulence. File in PDB format of target proteins 

Receptor tyrosine-protein kinase erbB-4 (2L2T and 3BCE) downloaded from PDB (Protein Data Bank) database (Table 4). 

(https://www.rcsb.org/) [79,80, 81] 

 

Selection of Standard Drugs 

Docking interaction analysis is essential in drug discovery and predicting the binding affinity between a ligand molecule (.sdf file) 

and target proteins (.pdb file). This evaluation predicts the optimal orientations (ie positions) of ligand-protein binding affinity to 

predict the formation of a stable complex. Docking interactions were performed using the iGEMDOCK software in the same 

manner as for phytocompounds. Various standard drugs have been selected for NSCLC, which are very effective in the human 

body, such as osimertinib etc. These drugs were selected for their effective inhibitory functions against selected diseases. Molecular 

docking study  

The iGEMDOCK program was used for a molecular docking study between selected phytocompounds, standard drug vs. target 

proteins in various proteins of NSCLC to identify potential therapeutic phytocompounds and predict ligand-protein interactions. 

For the iGEMDOCK study, target proteins were selected from the total protein data bank (PDB): For non-small cell lung cancer 

(NSCLC): 2L2T, 3BCE. iGEMDOCK software used .pdb files of target proteins and selected phytocompounds as input to predict 

docking interactions between ligands and proteins further. A molecular docking interaction study was performed between non-

toxic phytocompounds (compounds found in toxicity study) and these target proteins (RCSB, 2018; Rose et al., 2017).   

 

Evaluation of Pharmacokinetics Study   

Docking interaction analysis is essential in drug discovery and predicting the binding affinity between a ligand molecule (.sdf 

file) and target proteins (.pdb file). This evaluation predicts the optimal orientations (ie positions) of ligand-protein binding affinity 

to predict the formation of a stable complex. Docking interactions were performed using the iGEMDOCK software in the same 

manner as for phytocompounds. Various standard drugs have been selected for NSCLC, which are very effective in human body 

such as osimertinib etc. These drugs were selected for their effective inhibitory functions against selected diseases.   

Molecular docking study the iGEMDOCK program was used for a molecular docking study between selected phytocompounds, 

standard drug Vs target proteins in various proteins of NSCLC to identify potential therapeutic phytocompounds and predict 

ligand-protein interactions. For the iGEMDOCK study, target proteins were selected from the total protein data bank (PDB): For 

non-small cell lung cancer (NSCLC): 2L2T, 3BCE. iGEMDOCK software used .pdb files of target proteins and selected 

phytocompounds as input to predict docking interactions between ligands and proteins further. A molecular docking interaction 

study was performed between non-toxic phytocompounds. 
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3. RESULT 

In this work, I selected the plant Pinus Roxburghii name from them. A total 17 chemical compounds were included in the study for 

in silico. (Table 1). The chemical compound of Pinus Roxburghii was downloaded from the PubChem Compound database of the 

Therapeutic Target Database (Table 2). First Stage QSAR Study of Lipinski's Rule of Five Entire library compounds were screened 

for Lipinski rule five by Swiss ADME software. Out of a total 31 chemical compounds, only 81% (26) compounds were found to 

meet Lipinski's Rule of Five. Second Stage QSAR Study for Mutagenicity, Carcinogenicity, and Toxicity Initial filtering of the entire 

compound for the Lipinski's Rule of Five then filter for Mutagenicity, Carcinogenicity and Toxicity prediction. In-silico Batch 

predictions for Mutagenicity by Mutagenicity (Ames test) CONSENSUS model – 1.0.3 method was carried out using VEGA QSAR 

software. Out of a total 26 compounds, only total 92% (24) compounds as non-Mutagenicity (Table 3). 

 

Table 1 Classification of Plant 

Sr. No. Kingdom Plantae 

01 Clade Tracheophytes 

02 Clad Gymnosperms 

03 Diviion Pinophyta 

04 Class Pinopsida 

05 Order Pinales 

06 Family Pinaceae 

07 Genus Pinus 

08 Subgenus P. subg. Pinus 

09 Section P. sect. Pinus 

10 Subsection Pinus subsect. Pinaster 

11 Species P. roxburghii 

 

Table 2 Pub Chem study of Plants Phytocomponents 

No. Name of Compound 
PubChem 

ID 
Mol. Formula 

Mol. 

Weight 
SMILE Structure 

1. 
2-chloropropionyl 

chloride 
111019 C3H4Cl2O 126.97 CC(C(=O)Cl)Cl 

2. 
Boric acid, trimethyl 

ester 
8470 C3H9BO3 103.92 B(OC)(OC)OC 

3. 1-chloro butane 8005 C4H9Cl 92.57 CCCCCl 

4. 
Benzoic acid, 4-ethoxy-, 

ethyl ester 
90232 C11H14O3 194.23 

CCOC1=CC=C(C=C1)C(=O)O

CC 

5. Anthracene 8418 C14H10 178.23 
C1=CC=C2C=C3C=CC=CC3=

CC2=C1 

6. 
Phthalic acid, isobutyl 

octadecyl ester 

6423451 

 
C30H50O4 474.7 

CCCCCCCCCCCCCCCCCC

OC(=O)C1=CC=CC=C1C(=O)

OCC(C)C 

8 
2,2-

dibromocholestanone 
22212696 C27H44Br2O 544.4 

C[C@H](CCCC(C)C)[C@H]1C

C[C@@H]2[C@@]1(CC[C@H]3[

C@H]2CCC4[C@@]3(CC(C(=O

)C4)(Br)Br)C)C 

9 Terpinolene 11463 C10H16 136.23 CC1=CCC(=C(C)C)CC1 

10 Linalool 6549 C10H18O 154.25 CC(=CCCC(C)(C=C)O)C 

https://pubchem.ncbi.nlm.nih.gov/compound/8005
https://pubchem.ncbi.nlm.nih.gov/#query=C4H9Cl
https://pubchem.ncbi.nlm.nih.gov/compound/90232
https://pubchem.ncbi.nlm.nih.gov/#query=C11H14O3
https://pubchem.ncbi.nlm.nih.gov/compound/8418
https://pubchem.ncbi.nlm.nih.gov/#query=C14H10
https://pubchem.ncbi.nlm.nih.gov/compound/6423451
https://pubchem.ncbi.nlm.nih.gov/#query=C30H50O4
https://pubchem.ncbi.nlm.nih.gov/compound/22212696
https://pubchem.ncbi.nlm.nih.gov/#query=C27H44Br2O
https://pubchem.ncbi.nlm.nih.gov/compound/11463
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16
https://pubchem.ncbi.nlm.nih.gov/compound/6549
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O


ANALYSIS ARTICLE | OPEN ACCESS   

Drug Discovery 17, e31dd1946 (2023)                                                                                                                                                          5 of 16 

11 Isoborneol 6321405 C10H18O 154.25 
C[C@@]12CC[C@@H](C1(C)C)

C[C@H]2O 

12 p-Mentha-1,5-dien-8-ol 519323 C10H16O 152.23 CC1=CCC(C=C1)C(C)(C)O 

13 Terpinen-4-ol 11230 C10H18O 154.25 CC1=CCC(CC1)(C(C)C)O 

14 m-Cymen-8-ol 255195 C10H14O 150.22 CC1=CC(=CC=C1)C(C)(C)O 

15 p-Cymen-8-ol 14529 C10H14O 150.22 CC1=CC=C(C=C1)C(C)(C)O 

16 
Estragole (=Methyl 

chavicol) 
66957732 C20H24O2 296.4 

CC1=C(C=CC(=C1)CC=C)O.C

OC1=CC=C(C=C1)CC=C 

17 Citronellol 8842 C10H20O 156.26 CC(CCC=C(C)C)CCO 

18 Neral 643779 C10H16O 152.23 CC(=CCC/C(=C\C=O)/C)C 

19 Geraniol 
637566 

 

C10H18O 

 
154.25 CC(=CCC/C(=C/CO)/C)C 

20 Geranial 638011 C10H16O 152.23 CC(=CCC/C(=C/C=O)/C)C 

21 Isobornyl acetate 6950273 C12H20O2 196.29 
CC(=O)O[C@H]1C[C@@H]2C

C[C@]1(C2(C)C)C 

22 Linalool propanoate 6431132 C14H24O2 224.34 
CCCC(=O)OC(C)(CCCC(=C)C

)C=C 

23 Citronellyl acetate 9017 C12H22O2 198.3 CC(CCC=C(C)C)CCOC(=O)C 

24 Eugenol 3314 C10H12O2 164.2 COC1=C(C=CC(=C1)CC=C)O 

25 Neryl Acetate 1549025 C12H20O2 196.29 
CC(=CCC/C(=C\COC(=O)C)/

C)C 

26 Geranyl acetate 1549026 C12H20O2 196.29 
CC(=CCC/C(=C/COC(=O)C)/C

)C 

27 Longifolene (=Junipene) 1796220 C15H24 204.35 
C[C@]12CCCC([C@@H]3[C@

H]1CC[C@@H]3C2=C)(C)C 

28 Methyl eugenol 7127 C11H14O2 178.23 
COC1=C(C=C(C=C1)CC=C)O

C 

29 (E)-Caryophyllene 5281515 C15H24 204.35 
C/C/1=C\CCC(=C)[C@H]2CC

([C@@H]2CC1)(C)C 

30 

Precocene I (=6-

Demethoxyageratochro

mene) 

28619 C12H14O2 190.24 
CC1(C=CC2=C(O1)C=C(C=C2

)OC)C 

31 (E)-Ethyl cinnamate 637758 C11H12O2 176.21 
CCOC(=O)/C=C/C1=CC=CC=

C1 

32 n-Dodecanol 8193 C12H26O 186.33 CCCCCCCCCCCCO 

33 (E)-Nerolidol 5284507 C15H26O 222.37 
CC(=CCC/C(=C/CCC(C)(C=C)

O)/C)C 

 

 

 

 

 

 

 

https://pubchem.ncbi.nlm.nih.gov/compound/6321405
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O
https://pubchem.ncbi.nlm.nih.gov/compound/519323
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16O
https://pubchem.ncbi.nlm.nih.gov/compound/11230
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O
https://pubchem.ncbi.nlm.nih.gov/compound/255195
https://pubchem.ncbi.nlm.nih.gov/#query=C10H14O
https://pubchem.ncbi.nlm.nih.gov/compound/14529
https://pubchem.ncbi.nlm.nih.gov/#query=C10H14O
https://pubchem.ncbi.nlm.nih.gov/compound/66957732
https://pubchem.ncbi.nlm.nih.gov/#query=C20H24O2
https://pubchem.ncbi.nlm.nih.gov/compound/8842
https://pubchem.ncbi.nlm.nih.gov/#query=C10H20O
https://pubchem.ncbi.nlm.nih.gov/compound/643779
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16O
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O
https://pubchem.ncbi.nlm.nih.gov/compound/638011
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16O
https://pubchem.ncbi.nlm.nih.gov/compound/6950273
https://pubchem.ncbi.nlm.nih.gov/#query=C12H20O2
https://pubchem.ncbi.nlm.nih.gov/compound/6431132
https://pubchem.ncbi.nlm.nih.gov/#query=C14H24O2
https://pubchem.ncbi.nlm.nih.gov/compound/9017
https://pubchem.ncbi.nlm.nih.gov/#query=C12H22O2
https://pubchem.ncbi.nlm.nih.gov/compound/3314
https://pubchem.ncbi.nlm.nih.gov/#query=C10H12O2
https://pubchem.ncbi.nlm.nih.gov/compound/1549025
https://pubchem.ncbi.nlm.nih.gov/#query=C12H20O2
https://pubchem.ncbi.nlm.nih.gov/#query=C12H20O2
https://pubchem.ncbi.nlm.nih.gov/#query=C15H24
https://pubchem.ncbi.nlm.nih.gov/#query=C11H14O2
https://pubchem.ncbi.nlm.nih.gov/#query=C15H24
https://pubchem.ncbi.nlm.nih.gov/compound/28619
https://pubchem.ncbi.nlm.nih.gov/#query=C12H14O2
https://pubchem.ncbi.nlm.nih.gov/compound/637758
https://pubchem.ncbi.nlm.nih.gov/#query=C11H12O2
https://pubchem.ncbi.nlm.nih.gov/compound/8193
https://pubchem.ncbi.nlm.nih.gov/#query=C12H26O
https://pubchem.ncbi.nlm.nih.gov/compound/5284507
https://pubchem.ncbi.nlm.nih.gov/#query=C15H26O
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Table 3 Toxicity Prediction by VEGA QSAR 

No. 
Name of 

compounds 
SMILE 

Carcinogenit

y model 

(CAESAR) 

2.1.9 

Developmenta

l Toxicity 

model 

(CAESAR) 

2.1.7 

Non - Toxicant 

1 1-chloro butane CCCCCl 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

2 

Benzoic acid, 4-

ethoxy-, ethyl 

ester 

CCOC1=CC=C(C=C1)C(=O)OCC 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

3 Terpinolene CC1=CCC(=C(C)C)CC1 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

4 Linalool CC(=CCCC(C)(C=C)O)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

5 Citronellol CC(CCC=C(C)C)CCO 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

6 Neral CC(=CCC/C(=C\C=O)/C)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

7 Geraniol CC(=CCC/C(=C/CO)/C)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

8 Geranial CC(=CCC/C(=C/C=O)/C)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

9 
Isobornyl 

acetate 

CC(=O)O[C@H]1C[C@ 

@H]2CC[C@]1(C2(C)C)C 

Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

10 
Linalool 

propanoate 

CCCC(=O)OC(C)(CCCC(=C)C)C=

C 

Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

11 Eugenol COC1=C(C=CC(=C1)CC=C)O 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

12 Neryl Acetate CC(=CCC/C(=C\COC(=O)C)/C)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

13 Geranyl acetate CC(=CCC/C(=C/COC(=O)C)/C)C 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

14 
Longifolene 

(=Junipene) 

C[C@]12CCCC([C@@H 

]3[C@H]1CC[C@@H]3C2=C)(C)C 

Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

15 Methyl eugenol COC1=C(C=C(C=C1)CC=C)OC 
Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

16 
(E)-Ethyl 

cinnamate 
CCOC(=O)/C=C/C1=CC=CC=C1 

Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

17 (E)-Nerolidol 
CC(=CCC/C(=C/CCC(C)(C=C)O)/C

)C 

Non - 

Mutagenic 

Non - 

Carcinogen 
Non - Toxicant 

 

In-silico Batch predictions for Carcinogenicity-by-Carcinogenicity oral classification model (IRFMN) – 1.0.0 method was carried 

out using VEGA QSAR software. Out of total 24 compounds only a total 91% (22) compounds as non-Carcinogenicity (Table 3). In-

silico Batch predictions for Developmental Toxicity by the Developmental Toxicity model (CAESAR) – 2.1.7 method was carried out 

using VEGA QSAR software. Out of total 22 compounds only total 77% (17) compounds as Developmental Non-Toxicant (Table 3). 

In compare total 53% (31) out of 17 compounds were selected as Non-Mutagenicity, Non-Carcinogenicity & Developmental NON-

Toxicant. Those 53% (17) filtered compounds were selected for toxicity prediction. 

VEGA QSAR calculations were obtained for three different models/analyses and subsequently used to predict whether a 

compound was either toxic or nontoxic. Among compounds selected plant therapeutic compound: PubChem ID Eugenol (3314), 
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Linalool (6549), Methyl eugenol (7127), 1-chloro butane (8005), Citronellol (8842), terpinolene (11463), Benzoic acid, 4-ethoxy-, ethyl 

ester (90232), Geraniol(637566), (E)-Ethyl cinnamate (637758), Geranial (638011), Neral (643779), Neryl Acetate (1549025), Geranyl 

acetate (1549026), Longifolene (=Junipene), (1796220), (E)-Nerolidol (5284507), Linalool propanoate (6431132), Isobornyl acetate 

(6950273)  are non- Mutagenic, non-Carcinogen, non-Toxicant. 

 

Selection of Target 

There were six successful and two research targets were selected from the literature survey and TTD (Therapeutic Target Database). 

3D structure of the protein was downloaded from the PDB (Table 4). The resulting receptor was saved into a *.pdb file format for 

further Docking study. 

 

Table 4 Protein Data Bank 

No. PROTEIN ID Description Type of TARGATE 

1 2L2T Receptor tyrosine-protein kinase erbB-4 Successful Target 

2 3BCE Receptor tyrosine-protein kinase erbB-4 Successful Target 

3 6LUD Epidermal growth factor receptor Successful Target 

 

Molecular Docking studies 

The 37% (6) compounds having a drug like properties were selected as ligands to carry out for molecular docking studies in 

iGMDOCK software against the receptors. iGEM dock data Linalool propanoate (-96.7688), Geranyl acetate (-94.5596), (E)-Nerolidol 

(-93.3832) possessed lowest binding energy with 2L2T and (E)-Nerolidol (-98.3249), Neryl Acetate (-88.9739), Geranyl acetate (-

88.1579) possessed lowest binding energy with 3BCE. This lowest binding energy gives a more stable complex between drug and 

protein. Out of 17 compounds Geranyl acetate and (E)-Nerolidol had the most stable binding with both 3BCE and 2L2T proteins. 

And after performing docking with all the Ligands and drugs with Main Protein that use when the Drug will be Created then we 

found the results shown in (Figure 1, 2, 3).  

 

 
Figure 1 Binding energy values of the ligands with Protein 2L2T 
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Figure 2 Binding energy values of the ligands with Protein 3u2p 

 

 
Figure 3 Binding energy values of the ligands with Protein 6LUD 

 

Hydrogen Bond Interaction 

The best score ligand was further analyzed for H-bond interaction. Ligand PubChem ID: 5284507 (E)-Nerolidol was found to have 

zero hydrogen bond with Receptor tyrosine-protein kinase erbB-4 (Figure 4). The best score ligand was further analyzed for H-bond 

interaction. Ligand PubChem ID: 5284507 (E)-Nerolidol was found to have zero hydrogen bond Receptor tyrosine-protein kinase 

erbB-4 (Figure 5). The best score ligand was further analyzed for H-bond interaction. Ligand PubChem ID: 71496458 Osimertinib 

was found to -8.5 hydrogen bond with the Epidermal growth factor receptor (6LUD) (Figure 6). 
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Figure 4 Hydrogen Bond Interaction with Receptor tyrosine-protein kinase erbB-4 (2L2T) 

 

 
Figure 5 Hydrogen Bond Interaction with Receptor tyrosine-protein kinase erbB-4  (3BCE) 
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Figure 6 Hydrogen Bond Interaction with Epidermal growth factor receptor (6LUD) 

 

Evaluation of Pharmacokinetics by Swiss ADME 

The final set consisted of PubChem ID: 5284507 (E)-Nerolidol chemical compounds were selected for drug-like compounds. Predicts 

the value of physicochemical properties like Formula- C15H26O, Molecular weight-222.37 g/mol, Num. heavy atoms-16, Num. 

arom. heavy atoms-0, Fraction Csp3-0.6, Num. rotatable bonds-7 Num. H-bond acceptors-1, Num. H-bond donors-1, Molar 

Refractivity-74, TPSA-20.23 Å² (Table 5). Predicts the value of lipophilicity like Log Po/w (iLOGP), Log Po/w (XLOGP3), Log Po/w 

(WLOGP), Log Po/w (MLOGP), Log Po/w (SILICOS-IT), Consensus Log Po/w are followed as 3.64, 4.83, 4.4, 3.86, 4.21,4.19 (Table 6).  

 

Table 5 Physicochemical Properties 

1 Formula C15H26O 

2 Molecular weight 222.37 g/mol 

3 Num. heavy atoms 16 

4 Num. arom. heavy atoms 0 

5 Fraction Csp3 0.6 

6 Num. rotatable bonds 7 

7 Num. H-bond acceptors 1 

8 Num. H-bond donors 1 

9 Molar Refractivity 74 
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10 TPSA  20.23 Å² 

 

Table 6 Lipophilicity 

1 Log Po/w (iLOGP)  3.64 

2 Log Po/w (XLOGP3)  4.83 

3 Log Po/w (WLOGP)  4.4 

4 Log Po/w (MLOGP)  3.86 

5 Log Po/w (SILICOS-IT)  4.21 

6 Consensus Log Po/w  4.19 

 

Table 7 Water Solubility 

1 Log S (ESOL)  -3.8 

2 Solubility 3.53e-02 mg/ml ; 1.59e-04 mol/l 

3 Class  Soluble 

4 Log S (Ali)  -4.99 

5 Solubility 2.29e-03 mg/ml ; 1.03e-05 mol/l 

6 Class  Moderately soluble 

7 Log S (SILICOS-IT)  -3.15 

8 Solubility 1.56e-01 mg/ml ; 7.00e-04 mol/l 

9 Class  Soluble 

 

Predicts the Water Solubility like Log S (ESOL), Solubility, Class, as -3.8 1. 3.53e-02 mg/ml; 1.59e-04 mol/l, Soluble. Log S (Ali), 

Solubility, Class, as -4.99, 2.29e-03 mg/ml; 1.03e-05 mol/l, moderately soluble. Log S (SILICOS-IT), Solubility, Class, as -3.15, 1.56e-01 

mg/ml; 7.00e-04 mol/l, Soluble (Table 7). Predicts the medicinal chemistry like PAINS-0 alert, Brenk-1 alert: isolated alkene, Lead 

likeness- No; 2 violations: MW<250, XLOGP3>3.5, Synthetic accessibility 3.53 (Table 8). Predicts the Pharmacokinetics like GI 

absorption-High, BBB permeant-Yes, P-GP substrate-No, CYP1A2 inhibitor-Yes, CYP2C19 inhibitor-No, CYP2C9 inhibitor-Yes, 

CYP2D6 inhibitor-No, CYP3A4 inhibitor-No, Log Kp (skin permeation)- (-4.23 cm/s) (Table 9). Predicts the drug-likeness like 

Lipinski- Yes; 0 violation: MLOGP>4.15, Ghose- Yes, Veber- Yes, Egan- Yes, Muegge- No; 1 violation: Heteroatoms<2, 

Bioavailability Score 0.55 (Table 10). In total, highly predictive qualitative classification models were implemented.  

 

Table 8 Medicinal Chemistry 

1 PAINS  0 alert 

2 Brenk  1 alert: isolated alkene  

3 Lead likeness  No; 2 violations: MW<250, XLOGP3>3.5 

4 Synthetic accessibility  3.53 

 

Table 9 Pharmacokinetics 

1 GI absorption  High 

2 BBB permeant  Yes 

3 P-gp substrate  No 

4 CYP1A2 inhibitor  Yes 

5 CYP2C19 inhibitor  No 

6 CYP2C9 inhibitor  Yes 

7 CYP2D6 inhibitor  No 

8 CYP3A4 inhibitor  No 

9 Log Kp (skin permeation)  -4.23 cm/s 
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These models include human intestinal absorption, blood-brain barrier penetration, Caco-2 permeability, P-glycoprotein 

inhibitor, CYP450 substrate and inhibitor (CYP1A2, 2C9, 2D6, 2C19, and 3A4), Human Ether-a-go-go-Related Gene inhibition 

inhibitor, AMES Mutagenicity, Carcinogenicity (binary), honeybee toxicity, and Tetrahymena Pyriformis toxicity (Table 11). The 

predictive values as human intestinal absorption (+), blood-brain barrier penetration (+), Caco-2 permeability (+), P-glycoprotein 

inhibitor (-), CYP1A2 inhibition (+), CYP2C19 inhibition (-), CYP2C9 inhibition (-), CYP2C9 substrate (+), CYP2D6 inhibition (-), 

CYP2D6 substrate (-), CYP3A4 inhibition (-), CYP3A4 substrate (-), Human Ether-a-go-go-Related Gene inhibition inhibitor (+), 

AMES Mutagenicity (-), Carcinogenicity (binary) (-), honeybee toxicity (-), Tetrahymena Pyriformis toxicity (0.014838654).  

 

Table 10 Drug likeness 

1 Lipinski  Yes; 0 violation 

2 Ghose  Yes 

3 Veber  Yes 

4 Egan  Yes 

5 Muegge  No; 1 violation: Heteroatoms<2 

6 Bioavailability Score  0.55 

 

Advances in computational tools and techniques played an important role in the drug design and discovery process. To reduce 

the demerits of drug discovery such as cost, time, and manpower etc, virtual screening procedures are routinely used. It utilizes 

docking and scoring of each phytocompounds from a dataset and predicts the binding interaction between ligands and target 

proteins. Molecular docking techniques have helped important proceedings in drug discovery for a prolonged time. It is helpful to 

study posing interaction as well as pose mode in the binding pocket of a target protein and to predict binding properties between 

them. All in all, these procedures will be led to further pharmacological evaluation. 

 

Table 11 Prediction of admet SAR Properties 

 Compound 5284507 

1 Ames mutagenesis - 

2 Acute Oral Toxicity (c) III 

3 Androgen receptor binding - 

4 Aromatase binding - 

5 Avian toxicity - 

6 Blood Brain Barrier + 

7 BRCP inhibitior - 

8 Biodegradation + 

9 BSEP inhibitior - 

10 Caco-2 + 

11 Carcinogenicity (binary) - 

12 Carcinogenicity (trinary) Non-required 

13 Crustacea aquatic toxicity + 

14 CYP1A2 inhibition - 

15 CYP2C19 inhibition - 

16 CYP2C9 inhibition - 

17 CYP2C9 substrate - 

18 CYP2D6 inhibition - 

19 CYP2D6 substrate - 

20 CYP3A4 inhibition - 

21 CYP3A4 substrate - 

22 CYP inhibitory promiscuity - 
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23 Eye corrosion - 

24 Eye irritation + 

25 Estrogen receptor binding - 

26 Fish aquatic toxicity + 

27 Glucocorticoid receptor binding - 

28 Honey bee toxicity - 

29 Hepatotoxicity - 

30 Human Ether-a-go-go-Related Gene inhibition - 

31 Human Intestinal Absorption + 

32 Human oral bioavailability - 

33 MATE1 inhibitior - 

34 Mitochondrial toxicity - 

35 Micronuclear - 

36 Nephrotoxicity + 

37 Acute Oral Toxicity 1.418096423 

38 OATP1B1 inhibitior + 

39 OATP1B3 inhibitior + 

40 OATP2B1 inhibitior - 

41 OCT1 inhibitior - 

42 OCT2 inhibitior - 

43 P-glycoprotein inhibitior - 

44 P-glycoprotein substrate - 

45 PPAR gamma + 

46 Plasma protein binding 0.641673327 

47 Reproductive toxicity - 

48 Respiratory toxicity - 

49 Skin sensitisation + 

50 Subcellular localzation Lysosomes 

51 Tetrahymena pyriformis 0.014838654 

52 Thyroid receptor binding - 

53 UGT catelyzed + 

54 Water solubility -3.145595036 

 

4. DISCUSSION 

NSCLC or non-small cell lung cancer is a type of lung cancer that accounts for around 85% of all lung cancer cases. It is a complex 

disease that can be caused by a variety of factors, including smoking, exposure to air pollution, genetics, and certain occupational 

exposures. One of the most well-known risk factors for NSCLC is smoking. According to a study published in the Journal of 

Thoracic Oncology, smoking is responsible for up to 85% of lung cancer cases, and smokers are 15-30 times more likely to develop 

lung cancer than non-smokers (Sundbom et al., 2018). Other risk factors include exposure to radon, asbestos, and other chemicals 

found in the workplace, as well as a family history of lung cancer. 

In terms of treatment, NSCLC can be treated in a variety of ways, including surgery, radiation therapy, chemotherapy, targeted 

therapy, and immunotherapy. The choice of treatment depends on the stage of the cancer, the overall health of the patient, and 

other factors. One recent study published in the Journal of Clinical Oncology compared the effectiveness of two different treatments 

for NSCLC: Chemotherapy and immunotherapy. The study found that immunotherapy was more effective in patients with 

advanced NSCLC who had high levels of a specific protein, called PD-L1, in their tumors (Herbst et al., 2016). Another study 

published in the New England Journal of Medicine compared the effectiveness of two different targeted therapies for NSCLC: 
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Osimertinib and gefitinib. The study found that Osimertinib was more effective than gefitinib in patients with NSCLC who had a 

specific genetic mutation, called EGFR (Soria et al., 2018). 

NSCLC is a complex disease with many different causes and treatment options. Smoking is one of the most well-known risk 

factors for NSCLC, and a variety of treatment options exist, including surgery, radiation therapy, chemotherapy, targeted therapy, 

and immunotherapy. Recent studies have shown promising results for immunotherapy and targeted therapy in the treatment of 

NSCLC. Causes: The most significant risk factor for NSCLC is smoking tobacco. Other risk factors include exposure to radon gas, 

asbestos, air pollution, and genetic factors. Studies have shown that passive smoking, or exposure to second-hand smoke, can also 

increase the risk of NSCLC (Kalemkerian et al., 2018). The process of spading NSCLC typically involves the removal of the tumor 

along with a margin of healthy lung tissue. The extent of the spading depends on the size and location of the tumor, as well as the 

stage of the cancer.  

In some cases, a lobe of the lung may need to be removed (lobectomy), while in others, a smaller section of the lung may be 

removed (wedge resection or segmentectomy). Several studies have investigated the effectiveness of spading in NSCLC. One study 

published in the Journal of Thoracic Oncology found that spading was associated with improved survival in patients with early-

stage NSCLC. The study followed over 5,000 patients who underwent spading for stage I or II NSCLC and found that the 5-year 

survival rate was 73%. Another study published in the Annals of Thoracic Surgery compared different surgical approaches for 

spading NSCLC, including lobectomy, segmentectomy, and wedge resection. The study found that lobectomy was associated with 

the lowest risk of cancer recurrence and the highest overall survival rate, while wedge resection was associated with the highest risk 

of cancer recurrence.  

While spading is a common treatment for NSCLC, it is not always appropriate for all patients. Factors such as the patient's age, 

overall health, and stage of cancer need to be taken into consideration when deciding on the best treatment approach. In addition to 

surgical resection, other treatment options for NSCLC include radiation therapy, chemotherapy, targeted therapy, and 

immunotherapy. The choice of treatment depends on several factors, including the stage and location of the cancer, as well as the 

patient's overall health. Treatments: There are several treatment options available for NSCLC, including surgery, radiation therapy, 

chemotherapy, targeted therapy, and immunotherapy. The choice of treatment depends on the stage and type of NSCLC, as well as 

the patient's overall health. (Reck et al., 2016) Surgery is the preferred treatment for early-stage NSCLC. It involves removing the 

tumor and surrounding tissue.  

Radiation therapy and chemotherapy may also be used in combination with surgery to increase the chances of success. For 

advanced-stage NSCLC, targeted therapy, and immunotherapy are often used. Targeted therapy drugs are designed to target 

specific genes or proteins in cancer cells, while immunotherapy drugs stimulate the body's immune system to fight cancer cells. 

These treatments are usually less toxic than chemotherapy and may have fewer side effects. Herbst et al., (2016) Osimertinib is a 

small-molecule drug that is used to treat non-small cell lung cancer (NSCLC) with a specific mutation in the epidermal growth 

factor receptor (EGFR). It works by inhibiting the activity of the mutated EGFR protein, which slows down the growth and division 

of cancer cells. Osimertinib was first approved by the FDA in 2015 under the brand name Tagrisso.  

Studies have shown that Osimertinib is effective in treating NSCLC with the T790M mutation, which is resistant to other EGFR 

inhibitors. In addition, Osimertinib has been shown to have fewer side effects compared to other EGFR inhibitors. While Oimertinib 

has been a significant advancement in the treatment of NSCLC, researchers are still working on developing new drugs to improve 

the effectiveness of treatment for this disease. One approach is to combine Oimertinib with other drugs that target different 

pathways involved in cancer growth and progression. For example, a phase II clinical trial is currently investigating the 

combination of Oimertinib with the drug bevacizumab, which targets the vascular endothelial growth factor (VEGF) pathway. 

Another approach is to develop new drugs that target other mutations in the EGFR pathway. For example, the drug lazertinib is 

currently being tested in clinical trials for its ability to treat NSCLC with the L858R mutation in the EGFR gene.  

 

5. CONCLUSION  

Our integrative in silico analysis of Pinus Roxburghii phytochemicals for drug discovery in non-small-cell lung cancer (NSCLC) has 

yielded promising results. By using various computational tools, including PubChem, Vega Qsar, Lipinski, iGEM dock, ADME, and 

ADMET, we were able to identify several potentially effective compounds for the treatment of NSCLC. Our analysis has revealed 

that several of the phytochemicals found in Pinus Roxburghii possess potent pharmacological activities. These findings suggest that 

Pinus Roxburghii phytochemicals may have significant potential as lead compounds for the development of novel drugs. Moreover, 

the integrative in silico analysis has allowed us to screen the compounds for various pharmacokinetic and pharmacodynamic 

properties, providing a comprehensive understanding of their suitability for drug development.  
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The results of our study can be used as a basis for further experimental investigations to validate the potential of these 

phytochemicals as drug candidates. our findings suggest that Pinus Roxburghii has a phytochemical name (E)-Nerolido, that has the 

potential to be effective treatment for non-small-cell lung cancer (NSCLC). However, further research is needed to confirm the 

efficacy of these compounds and to optimize their use in the treatment of this disease. In conclusion, the integrative in silico 

analysis of Pinus Roxburghii phytochemicals for drug discovery in non-small-cell lung cancer (NSCLC) represents a significant step 

forward in the search for effective treatments for this devastating disease, and I look forward to further research in this area. 
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