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Molecular docking and
dynamics simulation of L-
hyoscyamine, eupatorium and
alkaloid L27 as potential

inhibitors against 3CLpro of
SARS-CoV-2

Manisha Mandal', Shyamapada Mandal*”

ABSTRACT

Background & objectives: The COVID-19 pandemic, caused with the infection of
SARS-CoV-2, is long lasting, and there is no specific treatment for the disease.
The current study authenticates, using bioinformatic approaches, the
inhibition of SARS-CoV-2 3CLpro with three bioactive phytochemicals
alkaloid L27, eupatorium and L-hyoscyamine from Lycopodium clavatum,
Eupatorium perfoliatum and Atropa belladonna, respectively. Methods: Molecular
ADMET, drug-likeness (MD)

simulation, and free energy calculation were applied to 3CLpro interaction

docking, analysis, molecular dynamics
with alkaloid L27, eupatorium and L-hyoscyamine, for the determination of
pharmacological efficacy, safety evaluation, to assess the dynamics and
energetics of these complexes. Results: Molecular docking demonstrated
binding energy < -6.5 kcal/mol for the phytochemicals used as ligands. No
violation of Lipinski’s RO5, favourable ADMET properties and bioavailability
scores (0.55) signify the suitability of drug-likeness for the selected ligands.
Molecular dynamic simulation revealed the root mean square (RMS) deviation
of ~ 0.12 nm about the protein backbone, and RMS fluctuations < 0.2 nm about
the ligand-heavy atoms, indicating the stability of protein-ligand complex
structures throughout the simulation course. Interpretation & conclusions: The
key amino acid players in protein-ligand interactions were Lys5, Met6, Ala7
and Vall125 through H-bond and hydrophobic bond formation. Though net
binding free energy of 3CLPro with eupatorium (-121.36 kJ/mol) was more
favorable than lycopodium (-114.17 kJ/mol) and L-hyoscyamine (-78.96
kJ/mol), all the ligands were found effective to inhibit the 3CLpro of SARS-
CoV-2. Thus, the compounds alkaloid L27 from Lycopodium, eupatorium, and
L-hyoscyamine might be useful in the management of COVID-19 associated

symptoms.

Keywords: ADMET, Atropa belladonna, Eupatorium perfoliatum, Lycopodium
clavatum, molecular docking, molecular dynamics simulation, SARS-CoV-2
3CLpro
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1. INTRODUCTION

The ongoing COVID-19 (coronavirus disease 2019) pandemic caused with SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) infection is a huge global health crisis, and there is an escalation of COVID-19 cases as well as deaths with an
alarming rate because of the lack of COVID-19 specific effective drugs or suitable vaccines. Notably, as of April 28, 2021, 148,329,348
confirmed cases of COVID-19 including 3,128,962 deaths have been reported globally (https://covid19.who.int). Therefore, it is
critical to discover the specific drugs, for the inhibition of SARS-CoV-2 growth and COVID-19 treatment, with improved efficacy
and safety, and in this connection, different existing (approved and experimental) SARS-CoV-2 targetable drugs have been
repurposed!.

The SARS-CoV-2, on gaining entry into the host cell, with the help of receptor binding domain RBD of the spike protein S,
releases its RNA, and translates the ppla and pplab from ORFs la and 1b of the viral genome. The ORFla encodes 3CLpro (3
chymotrypsin-like protease), also called main protease (Mpro) and the part of ppla (nsp5), and PLpro (papain-like protease) that
auto-catalyze the viral ppla and pplab into 16 non-structural proteins (nspl to nsp16), the replicases, of which 11 are produced by
the 3CLpro?. The SARS-CoV-2 3CLpro contains three domains: domain I (8-101 amino acid residues), II (102-184 amino acid
residues) and domain III (201-306 amino acid residues), the substrate binding region is positioned at the cleft of domain I and II,
consisting of conserved His41 (acts as nucleophile) and Cys145 (catalytic dyad that acts as a proton acceptor)®. The SARS-CoV-2
3CLpro is an excellent druggable target, because of its crucial role in cleaving the coronavirus polyproteins into functional
components vital for viral replication and maturation, and there is no such enzyme produced in human with similar cleavage action
that might exclude the possibility of cellular harmfulness upon the possible inhibition of 3CLpro*.

In absence of an effective treatment of COVID-19 and in view of the adverse toxic effects of the currently available drugs, some
phytoconstituents from medicinal plants are worthy of investigation for formulating suitable therapeutic strategies against COVID-
1956, The bioinformatic tools like molecular docking, ADMET, drug-likeness analysis, molecular dynamics (MD) simulation, and
free energy calculation are powerful tool in structure-based drug designing from protein-ligand interaction, estimation of
pharmacological efficacy, safety assessment, to understand the dynamics and energetics of these complexes”5.

The homeopathic medicines, over the world, are mostly derivatives of plant products because of their safety and efficacy. The
Andgrographis paniculate active compounds (andrographolide, 14-deoxy 11,12-didehydro andrographolide, neoandrographolide and
14-deoxy andrographolide), an excellent source of homeopathic medicine, have been shown to possess antiviral activity against
3CLpro of SARS-CoV-2 by molecular docking®. The Ministry of Ayush, Government of India has suggested for the treatment of
COVID-19 with different ~ homeopathic medicines, including belladonna, eupatorium and lycopodium
(https://www.ayush.gov.in/ayush-guidelines.html). Treatment of laboratory confirmed acute COVID-19 cases with either Bryonia
alba, Gelsemium sempervirens, Arsenicum album, or Phosphorus has been reported using different potencies (30 CH for 63%, 200 CH
for 20%, and 5 CH to 10 M for 17% patients) with positive outcomes®0. Moreover, a number of homeopathic medicines from India
(http://ctri.nic.in/Clinicaltrials/advsearch.php; https://ayushportal.nic.in/Covid.aspx), along with Natrum muriaticum (LM2) has been
in trial (Unique ID: UMINO000040602) to investigate the effectiveness and safety of the drug for mild cases of COVID-19 in primary
health care!.

On the basis of the facts and findings mentioned above, the current study aims to perform computational validation, through
molecular docking, ADMET analysis, MD simulation, and free energy studies, of three bioactive phytochemicals: alkaloid L27 from
Lycopodium clavatum; eupatorium i.e., 2'-hydroxy-4,4'5',6'-tetramethoxychalcone from Eupatorium perfoliatum; L-hyoscyamine, a
belladonna alkaloid from Hyoscyamus niger or Atropa belladonna, against SARS-CoV-2 target protein 3CLpro, for the management of
COVID-19 using repurposed adjuvant homeopathic medicines.

2. MATERIALS AND METHODS

System information

The molecular docking and ADMET were analyzed in Windows 10 Pro Intel(R) Core (TM) i3-4010U CPU @ 1.70GHz, 4GB RAM,
with Desktop 5IMLB7B 64-bit OS. MD simulation and free energy calculation were executed on Nvdia NV118 / Mesa Intel® UHD
Graphics (ICL GT1), Cuda compilation tools, release 10.1, V10.1.243, 7.6 GiB memory, Intel® Core™ i5-1035G1 CPU @ 1.00GHz x 8
processor, with disk capacity 1.3 TB on Ubuntu 20.04.2 LTS 64-bit OS, 3.36.8 Gnome version.

Retrieval and preparation of ligands
The 3D structures of L-hyoscyamine (PubChem CID 3661), eupatorium (PubChem CID: 6253276), and alkaloid L27 (PubChem CID:

600064), were retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/). The hydrogen atoms and Gasteiger charges were
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added to the ligand using UCSF Chimera version 1.15 (https://www.cgl.ucsf.edu/chimera/). The residue names for the ligands L-
hyoscyamine, eupatorium, and alkaloid L27 from lycopodium were EWBC, INMW and X7TW respectively, as available from
Automated Topology Builder (ATB) and Repository version 3.0 (https://atb.uq.edu.au/).

Retrieval and preparation of protein

The crystal structure of SARS-CoV-2 3CLpro (PDB ID: 7K3T) was retrieved from RCSB PDB (http://www.rcsb.org//pdb). The
ligands, solvents, or ions bound to the receptor were removed, and Gasteiger charges were added, using UCSF Chimera version
1.15  (https://www.cgl.ucsf.edu/chimera/). The active site of protein was predicted using fpocket 1.0, in RPBS
(https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal. py#forms::fpocket).

ADMET and drug-likeliness

The ADMET properties and bioavailability of ligands were evaluated using SwissADME (http://www.swissadme.ch/) and pkCSM
(http://biosig.unimelb.edu.au/pkcsm/prediction). The oral drug likeness properties of the ligands were defined following Lipinski’s
ROS5: molecular weight < 500 gm, lipophilicity log P < 5, hydrogen bond (H-bond) donors < 5, H-bond acceptors < 10, and molar

refractivity < 14012

Molecular docking

The molecular docking of the ligands against 3CLpro were evaluated using AutoDock Vina, in UCSF Chimera 1.15
(https://www.cgl.ucsf.edu/chimera/download.html). A grid box of 30x30x30 A3 (for EWBC and X7TW) and 50x44x40 A3 (for INMW)
were generated with coordinates: x =2.769, y=2.776, and z=24.065, for all the ligands. The binding energy (BE) < -6.5 kcal/mol was

considered as the most binding effectiveness of the ligands with the receptor in the docking?®.

Ramachandran plot
For comparison and quality assessment of the structures, the protein and its complexes with the ligands were subjected to
Ramachandran plot analysis with PROCHECK SAVES v6.0 (https://saves.mbi.ucla.edu).

Molecular dynamics simulation

To analyze the stability and dynamics of apo 3CLpro (without ligands) and halo 3CLpro (with ligands EWBC, INMW and X7TW),
MD simulation was carried out for 1000 ps using GROMACS version 2021 (www.gromacs.org), with CHARMM36-feb2021 all-atom
force field'. The topology for 3CLpro was built using GROMACS version 2021, and the topology parameterization of the ligands
was carried out using CHARMM General Force Field (CGenFF) server’. A total of four simulations were performed: (i) 7K3T:
model structure of 3CLpro without ligand, (ii) 7K3T-EWBC: model structure of 3CLpro complex with L-hyoscyamine, (iii) 7K3T-
INMW: model structure of 3CLpro complex with eupatorium, and (iv) 7K3T-X7TW: model structure of 3CLpro complex with
alkaloid L27 from Lycopodium.

The apo and halo 3CLpro were solvated individually in a dodecahedron box of size 10 A with TIP3P water model. The solvated
systems were neutralized with the addition of Na* ions. A convergence criteria of 1000 kJ/mol/nm were applied to achieve energy
minimization for a maximum 50,000 steps to remove steric clashes (www.gromacs.org). Equilibration of the solvent molecules
around the solute was applied on position restrained heavy atoms of the ligand along with the protein, using genrestr module of
gromacs. Equilibration was conducted under isothermal-canonical (NVT) ensemble with constant number of particles N, volume V
and temperature T, over 100 ps simulation period, using t couple = V-rescale (modified Berendsen thermostat) and Particle Mesh
Ewald Coulomb for long range electrostatics!®’7. Temperature coupling groups included protein-ligand and water-ions under
protein and non-protein categories respectively. Equilibration of pressure P was achieved with isothermal-isobaric (NPT) ensemble
for a 100 ps duration, wherein the number of particles N, P and T are constant, using Parinello-Rahman barostat's. The Van der
Waals and Coulombic interaction cut-off radius utilized were 12 A. The position restraining forces were released and MD
simulation was conducted for 1000 ps using leap-frog integrator with time step of 2 fs, by searching neighbouring grid cells every
100t step?®.

MD trajectory analysis

The MD trajectories were analysed to estimate the energies, intra-peptide and peptide-water hydrogen bonds, free energy of
solvation, area per residue, solvent accessible surface area (SASA), root mean square deviation (RMSD) and RMS fluctuation
(RMSF), using GROMACS version 2021 (www.gromacs.org) tools.
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Binding Free Energy calculation

The binding free energies (AGoind) were calculated applying Molecular Mechanics—Poisson Boltzmann Surface Area (MM-PBSA)
approach® for the 3CLPro-ligand complex, given by, AGbind = AEelectrostatic + AEvaw + AGsolv — TAS, where AEetectrostatic, AEvaw, AGsolv, and
TAS, correspond to the energy changes due to electrostatic and Van der Waals interactions, free energy change of solvation, and the
entropic contribution TAS at temperature T. The entropy calculations were not done as they may alter the binding free energy

values reported for the molecules®.

Visualization

Molecular graphics and analysis of the protein-ligand complexes were done using VMD (http://www.ks.uiuc.edu/Research/vmd/),
UCSF Chimera version 1.15 (https://www.cgl.ucsf.edu/chimera/download.html), XMGrace tools (www.gromacs.org), PyMOL
version 2.4.1 (https://pymol.org), and Discovery Studio Visualizer v21. 1.0.20298 (https://discover.3ds.com/discovery-studio-

visualizer-download).

3. RESULTS
ADMET analysis and drug-likeness
The EWBC, INMW and X7TW ligands obeyed Lipinski’s RO5 for drug-likeness of a compound (Table I), and ADMET properties

were within favourable ranges (Table II).

Table I. Lipinski’s RO5 for the bioactive phytocompounds: EWBC, INMW, and X7TW interpreted with SwissADME and pkCSM

Property Bioactive phytocompounds (ligand molecules)
EWBC INMW X7TW
Molecular Weight (g/mol) 289.37 344.36 261.36
LogP 1.9309 3.3227 1.757
#H-bond acceptors 4 6 3
#H-bond donors 1 1 1
Molar Refractivity 84.51 94.24 78.31
Fraction Csp3 0.59 0.21 0.81
#Rotatable bonds 5 7 0
TPSA (A?) 49.77 74.22 40.54

EWBC: L-hyoscyamine; INMW: eupatorium; X7TW: alkaloid L27 from Lycopodium.

Table II. ADMET profiles of bioactive phytocompounds used as ligands (EWBC, INMW, X7TW)

Property Model Ligand molecules
EWBC INMW X7TW
Absorption Water solubility (log mol/L) -1.943 -4.434 -2.594
Intestinal absorption (human) % 94.508 92.713 95.517
Caco2 permeability 1.289 -4.434 -2.594
Skin permeability (log Kp) -4.488 -2.778 -3.514
P-glycoprotein substrate Yes No No
Distribution Fraction unbound (human) 0.386 0 0.613
BBB permeability (log BB) 0.234 -0.591 0.385
CNS permeability (log PS) -2.931 -2.968 -3.188
Metabolism CYP2D6 substrate No No No
CYP3A4 substrate No Yes Yes
CYP3A4 inhibitor No Yes No
Excretion Total clearance (log ml/min/) 1.013 0.239 0.566
Renal OCT?2 substrate No No No
Toxicity AMES toxicity No Yes No
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Oral rat acute toxicity (LDso) mol/kg 2.672 1.991 2.211
Oral rat chronic toxicity (LOAEL) log 2.358 2.248 2.166
mg/kg bw/day

Hepatotoxicity No No No
Skin sensitization No No No

EWBC: L-hyoscyamine; INMW: eupatorium; X7TW: alkaloid L27 from Lycopodium

D LPO & LIPO LIPO
F
FLEX SIZE FLEX SIZE FLEX SIZE
ISATU POLAR  |NSATU POLAR  INSATU POLAR
BAS: 0.55 BAS: 0.55 BAS: 0.55
INSOLU INSOLU INSOLU

Fig. 1. 3D structure of ligands: (A) EWBC, (B) INMW, and (C) X7TW; bioavailability radar depicting LIPO (lipophilicity), SIZE
(molecular weight), POLAR (TPSA: topological polar surface area), INSOLU (solubility), FLEX (flexibility), INSATU (saturation)
and bioavailability score (BAS): (D) EWBC, (E) INMW, and (F) X7TW.

Molecular docking

The binding energies of EWBC, INMW and X7TW with 3CLpro were -6.9, -6.5 and -6.8 kcal/mol respectively. All the three ligands
occupied similar binding sites within the pocket of 3CLpro (Fig. 2A). The 2D interaction in the docked complexes (Fig. 2B to 2G)
showed 7K3T-EWBC complex displayed three conventional H-bonds with GIn110, GIn107 and Prol08, and 3 hydrophobic
interactions (Fig. 2C). The 7K3T-X7TW complex showed three conventional H-bonds with GIn110 and His246, GIn107, and one
hydrophobic bond with His246 (Fig. 2E). The 7K3T-INMW complex displayed two conventional H-bonds with His246, and 8
hydrophobic interactions (Fig. 2G). The 7K3T formed carbon-hydrogen bonds with Pro108, Gly109 and Glu240 for EWBC (Fig. 2C),
Gly109, GIn110, Pro132 and Glu240 for INMW (Fig. 2G) and Pro108 for X7TW (Fig. 2E). The m-alkyl hydrophobic interaction was
found with all the ligands; -7t stacked in EWBC and X7T; and mt-rt T-shaped and alkyl bonds in X7TW were found (Fig. 2).
Electrostatic interactions involved attractive charge with Glu240 and m-cation with His246 in 7K3T-EWBC (Fig. 2C), and m-anion
with Glu240 in 7K3T-X7TW (Fig. 2E).

Molecular dynamic simulation

The temperature attained ~ 300 K based on Maxwell distribution of kinetic energy, that remained stable during the equilibration
period (Table III, Fig. 4A). The pressure with respect to a reference of 1 bar, fluctuated during equilibration, evident from large
RMSD (Table III, Fig. 4B); application continued until the pressure reached the proper density (Table III, Fig. 4C), stable equal to the
experimental value ~1000 kg/m? and expected density of TIP3P model value 980 kg/m?.

The angles and the distances between the geometrical centres of donor-Hbond-acceptor (D-H--A) are depicted in Fig. 4D and
Fig. 4E. The angle of gyration remained relatively unchanged about Ca (~110°) and backbone atoms (~112°) (Fig. 4f). The 7K3T
remained stable in its folded conformation throughout simulation at 300 K, evident from invariant radius of gyration, average 2.19
nm (Fig 4E).
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Fig. 2. (A) The poses of ligands EWBC (red), X7TW (magenta) and INMW (yellow) within the pocket of 3CLpro; 3D interaction of
the docked complex: (B) 7K3T-EWBC, (D) 7K3T-X7TW, (F) 7K3T-INMW; 2D interaction of the docked complex: (C) 7K3T-EWBC, (E)

7K3T-X7TW, (G) 7K3T-INMW.
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Fig. 3. VMD (visual molecular dynamics) of (A) 7K3T-EWBC, (C) 7K3T-INMW, (E) 7K3T-X7TW; key H-bond interactions in
simulated complex: (B) 7K3T-EWBC, (D) 7K3T-INMW, (F) 7K3T-X7TW.
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Fig. 4. Molecular dynamic trajectory analysis: (A) temperature progression over the course of simulation, (B) pressure variation

with respect to the reference pressure of 1 bar, (C) equilibration with respect to density, (D) angle distribution, (E) distance between

the geometrical centers of the important donor-Hbond-acceptor triplets, and (F) angle of gyration with radius of gyration of free

protein in inset.

Table III. Energy parameters and structural features of ligand-bound and unbound protein 7K3T (3CLpro).

7K3T-EWBC 7K3T-INMW 7K3T-X7TW 7K3T
Potential energy (kJ/mol) —1.057 x 10 —1.024 x 10 —1.064 x 106 —1.022 x 10°
. 9.86 x 1020n 4695  9.66 X 1020on 1973  8.84 x 10%0n 4697 atom in 8.57 x 102on 2063 atom

Maximum force Fmax

atom in 1043 steps atom in 365 steps 1312 steps in 313 steps
Solvent molecules (Na*) number 21220 (3) 21219 (4) 21220 (3) 21232 (4) 0
Temperature (K) 299.77 £ 0.25 299.78 £ 0.15 299.74 £ 0.23 299.82 £ 0.21 eo)
Pressure (bar, RMSD) —14.404+9.9,111.53 —12.50 £ 13.0, 109.40 —13.79 £ 13.0, 113.53 —0.14.40 £ 2.9, 119.0 H@
Density (kg/m3) 1026.97 + 0.84 1027.50 £0.90 1027.03 £ 0.85 1036.37 £ 0.18 :<§0
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Enthalpy (kJ/mol)
Total interaction energy (kJ/mol)

C-SR (kJ/mol)
LJ-SR (kJ/mol)

RMSD (nm)

Intra-peptide Hydrogen bonds
Peptide-water Hydrogen bonds
Total Hydrogen bonds

Total salt bridges

Ramachandran plot features

G-factors

(i) Dihedrals
(ii) Covalent
(iii) Overall
Planar groups
Within limits
Highlighted

Residue properties
Maximum deviation

Bond length/angle

Morris et al class

Bad contacts

—711677 £ 250
—47.03+5.2
—-11.58+7.1
—3544+75

0.1283 + 0.0194

215.78 £ 0.69
606.18 + 1.20
300
17

-0.43
-1.74
-0.94

59.1%
40.9%

4.6
7.3
112
0

—711525+ 190
—-90.97+ 1.5
—28.64+ 2.4
—62.331+18

0.1276 + 0.0022

223.14 %+ 0.64
586.58 + 1.24
311
17

-0.41
-1.69
-091

53.6%
46.4%

4.9
7.9
112
0

—711337 £ 140
—7822+1.0
—2434+19
—53.871+0.38

0.1176 £ 0.0016

223.0 £ 0.66
591.34 + 1.25
296
16

-0.45
-1.67
-0.93

50.9%
49.1%

5.0
7.1
112
0

—721115 + 100

0.1178 + 0.0018(E)
0.1528 + 0.0002(C)
222.84 + 0.65
585.54 + 1.02
309
15

-0.19
-0.06
-0.13

93.6%
64%

4.0
52
112
0

7K3T-EWBC: 3CLpro complex with L-hyoscyamine; 7K3T-INMW: 3CLpro complex with eupatorium; 7K3T-X7TW: 3CLpro complex
with alkaloid L27 from Lycopodium; 7K3T: 3CLpro without ligand; C: crystal; E: equilibrated; values expressed as mean + SEM

(standard error of mean)

RMSD and RMSF

The RMSD of backbone after least square fitting to backbone for apo and halo protein were ~0.12 nm throughout simulation (Fig.
5A). The RMSD of equilibrated and crystal structures over backbone atoms showed similar values (0.12 nm), implying stability of
the structures. The RMSD of Ca after least square fit to Ca showed no deviation in structure compared to the backbone atoms. The
RMSD about the backbone fitted to ligand heavy atoms were 0.4-0.5 nm (Fig. 5B). The RMSD of distances between backbone atoms

were 0.09-0.10 nm, and ligand heavy atoms were 0.046, 0.056 and 0.011 nm, for INMW, EWBC and X7TW, respectively (Fig. 5C).
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Fig. 5. Molecular dynamics RMSD and RMSF: (A) backbone RMSD after least square fit to backbone for the bound and unbound
protein, (B) backbone RMSD fitted to ligand heavy atoms for the protein-ligand complex, (C) RMSD of distances between backbone
atoms and between ligand heavy atoms, (D) RMSF of distances between backbone atoms, with RMSD of crystal ‘C” and equilibrated
“E’ structure for 7K3T in inset, (E) RMSF about the ligand-heavy atoms, and (f) RMSF per residue about the backbone atoms.

The RMSF of distances between backbone atoms showed no variation in structure with RMSD, except the crystal structure of the
free protein (Fig. 5D). The RMSF of the ligand-heavy atoms remained < 0.2 nm (Fig. 5E). The RMSF per residue about the backbone

atoms diminished from initial high values ranging 0.2-0.3 nm to an average of 0.07-0.08 nm levels (Fig. 5F).

Ramachandran plot and secondary structures

A relatively higher residue properties (maximum deviation and bond length/angle) and planar group features but lower G-factors

(dihedrals and covalents) were observed in the protein-ligand complex compared to the free protein (Table III, Fig. 6A, 7A, 8A, 9A).
The evolution of visual molecular dynamics (VMD) attributed secondary structures including turn, extended configuration,

isolated bridge, a-helix, 3-10 helix, ®-helix and coil, categorized to each residue of the apo and halo 7K3T showed relative

distribution of structures over the course of simulation with comparatively higher involvement of turns in fluctuation events (Fig.

6B, 7B, 8B, 9B).
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structures, (C) H-bond, (D) salt bridge interaction, and (E) SASA.
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Fig. 9. (A) Ramachandran plot analysis of 7K3T; VMD time series simulation analysis for 7K3T-EWBC: (B) secondary structures, (C)
H-bond, (D) salt bridge interaction, and (E) SASA.
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VMD time series H-bond and salt bridge interaction

The MD simulation trajectory analysis of H-bonds, their occupancy percent in the structure, and salt bridge interaction for halo
7K3T in complex with EWBC (Fig. 6C and 6D), INMW (Fig. 7C and 7D), X7TW (Fig. 8C and 8D) and apo 7K3T (Fig. 9C and 9D) are

explained later in the context of molecular interactions.

Solvent Accessible Surface Area of protein-ligand

The protein-ligand complexes were exposed to the solvent with an average area of 147-193 nm? (Table IV, Fig. 6E, 7E, 8E, 9E). The

complex bearing polar molecules showed higher average area of 193 nm? compared to non-polar (150 nm?) counterpart and
combination of the two (149 nm?) (Fig. 10A). The 7K3T contribution in SASA was ~ 2 nm? less than that of the protein-ligand
complex. SASA per residue ranged 0.48-1.4 nm?with Arg217 (polar) and Phe223 (non-polar) as the major contributors (Table IV, Fig.

10B).

Table IV. Free energy of solvation (AGsolv), solvent accessible surface area (SASA) and residue area for the polar, non-polar and total

residues of bound and unbound protein during MD simulation

residue area

Structure Residue types AGsolv (kJ/mol) SASA (nm?) (nm?)
Non-polar 75.36 + 0.45 150.28 + 0.14 0.98 £ 0.6
7K3T-EWBC Polar 14.73 £ 0.37 193.77 £ 0.18 1.394 £ 0.6
Total-protein —3497 + 041 148.66 + 0.19 048+ 0.5
Non-polar 74.98 + 0.42 150.57 + 0.13 0.98 4 0.6
7K3T-INMW Polar 11.83+ 0.5 193.96 + 0.21 1395+ 0.6
Total-protein —34.29 £ 0.38 149.98 + 0.15 049+ 0.5
Non-polar 75.39+0.47 150.12 + 0.14 098+ 0.6
7K3T-X7TW Polar 13494 0.43 193.96 + 0.16 1.395+£ 0.6
Total-protein —35.98+ 0.44 14992 +0.18 0.49 £+ 0.5
Non-polar 75.03 + 0.45 150.58 + 0.12 0.98 + 0.6
7K3T Polar 12.49 + 0.44 191.44 + 0.14 1377406
—37.05+ 0.46 147.52 + 0.14 0.48+ 0.5

Total-protein

AGsolv: free energy of solvation (kJ/mol); SASA: solvent accessible surface area (nm?); values expressed as mean + SEM (standard

error of mean)
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Molecular interaction of 3CLpro with ligands after MD simulation

A large number of peptide-water H-bonds compared to intra-peptide H-bonds were found, due to the dissolution of solutes in large
number of solvent molecules (Table III, Fig. 10C and 10D). The equilibrated 7K3T-EWBC complex exhibited two conventional H-
bonds with Lys5 and Val125, two C-H bonds with Lys5 and Gly124, two hydrophobic interactions: n-rt stacked (Ala7 and Phe8) and
m-rt T-shaped (Met6 and Ala7) (Fig. 11A and 11B). The 7K3T-INMW demonstrated one conventional H-bond with GIn127 and three
C-H bonds with Val125 (Fig. 11C and 11D). In addition, 7K3T-INMW displayed one m-donor H-bond with Ala7, one 7t-S bond with
Met6, m-lone pair with Val125, one m-mt stacked (Ala7 and Phe8), three m-nt T-shaped (Lys5 with Met6, Met6 with Ala7, Val125 with
Tyr126), three alkyl bonds with Val125 and Met6, t-alkyl bond with Ala7. The 7K3T-X7TW showed one conventional H-bond with
Lys5 and one C-H bond with Ala7 (Fig. 11E and 11F). The H-bond distance ranged 1.74 - 2.89 A, and D-H-~-A angle ranged 150.45 -
164.04° (Fig. 11). The Arg40 of 7K3T donated H-atom to Asp187 in complex with X7TW and INMW with maximum 119.61% and
100% occupancies, respectively (Fig. 7C and 8C). Complexation with EWBC exhibited 88.24% maximum occupancy between Arg217
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and Gly215, compared to the highest 82.35% occupancy for apo 7K3T between Argl31 and Asp289 (Fig. 6C and 9C). The carbon-
hydrogen bond distance ranged 2.69 - 3.05 A with bond angles ranging from 93.63 to 113.94%. The hydrogen acceptors were Lys5
and Gly124 in 7ZK3T-EWBC, Val125 in 7K3T-INMW, and Ala7 in 7K3T-X7TW (Fig. 11). Seventeen salt-bridges were formed for each
of 7K3T-EWBC-and 7K3T-INMW, while 7K3T-X7TW and apo 7K3T generated 16 and 15 salt bridges, respectively (Table III). Arg131
formed maximum number of salt bridges involving Asp197, Asp289, Glu290 both in presence and absence of complexation (Fig. 6D,
7D, 8D, 9D).
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Fig. 12. MD simulation time-series energy components of protein-ligand complex: (A) enthalpy, (B) free energy change of solvation

for polar, non-polar and total protein residues, and (C) non-bonded interaction energy.

Free energy calculation for 3CLpro ligand interaction
The enthalpy for apo and halo protein were -7.12 x 10° and -7.11 x 10° kJ/mol, respectively (Table III, Fig.12A). The free energy
change of solvation, AGsol, for the apo and halo protein are shown in Table IV and Fig. 11B. The AGsolv for polar residues were from
11.83 to 14.73 kJ/mol, for non-polar residues ~75 kJ/mol, and for combinations were from -37.05 to -35.98 kJ/mol (Fig. 12B).

The non-bonded interaction energy between the ligands and protein were quantified from the strength of short-range
Coulombic (C-SR)/electrostatic energy and short-range Lennard-Jones (L]J-SR)/Van der Waals energy (Fig. 12C). The contribution of
electrostatic and Van der Waals energy components, respectively, revealed a higher value for 7K3T-INMW (-28.64 kJ/mol and -62.33
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kJ/mol), compared to that of 7K3T-X7TW (-24.34 kJ/mol and -53.87 kJ/mol) and 7K3T-EWBC (-11.59 k]J/mol and -35.44 k]/mol) (Table
III, Fig. 12C). The non-bonded interaction energy of 7K3T-INMW (-90.97 k]J/mol) was higher compared to that of the 7K3T-X7TW (-
78.22 kJ/mol) and 7K3T-EWBC (-47.03 kJ/mol). The AGsov was higher for 7K3T-X7TW (-35.98 kJ/mol) compared to 7K3T-EWBC (-
31.93 kJ/mol) and 7K3T-INMW (-30.39 kJ/mol) (Fig. 12b).

4. DISCUSSION

The homeopathic medicines such as Atropa belladonna, Eupatorium perfoliatum, and Lycopodium clavatum are reported useful against
various diseases, and might be repurposed in the management of COVID-19 associated symptoms?-?®>. The bioavailability radar
representing optimal range of properties signifying the drug-likeness of compounds were??: lipophilicity (-0.7 < XLOGP3 < 5.0),
size (150g/mol < MW < 500g/mol), polarity (20A? < TPSA < 130A2), solubility (log S (ESOL) < 6), flexibility (number of rotatable
bonds < 9), and saturation (0.25 < fraction Csp3 < 1); values for our ligands ranged, respectively, from 1.00 to 3.77, 261.36 g/mol to
344.36 gm/mol, 40.54 A2 to 74.22 A2, -4.24 to -2.09, zero to 7, and 0.21 to 0.81, lying within the pink region. However, the INMW
saturation value was slightly lower in terms of fraction csp3 (0.21), nevertheless, the bioavailability score for EWBC, INMW, and
X7TW ligands, in our study, was 0.55, indicating their acceptability for oral administration?*. In-silico toxicity by ADMET showed
none of the ligands EWBC, INMW, and X7TW possessed potential hepatotoxicity or cytotoxicity except INMW AMES positive.

The prevailing interaction patterns governing protein-ligand molecular docking were 0.38% (12/32) hydrophobic interactions,
0.53 % H-bonds (17/32), and 0.09% (3/32) electrostatic bond. A model of a protein with docked ligand considers the bound state
whereas desolvation plays a very important role, particularly with ionised or polar functional groups in molecular interaction
necessitating characterization of dynamic interactions of protein-ligand complexes with MD simulation?.

The MD simulation is an established bioinformatic approach for the investigation of the stability and spatio-temporal dynamic
evolution of the protein-ligand complex at atomistic resolution?”. The systems considered herein this study exhibited proper
equilibration with respect to the temperature, pressure and density required for MD simulation. The position restraints applied to
both apo and halo protein in our study did not impose any variation in the crystal and equilibrated structure for both RMSD and
RMSF of backbone atoms after least square fit to backbone and ligand heavy atoms. Both apo and halo 7K3T exhibited good quality
model evident from 90.2% residues falling in the most favored regions in Ramachandran plot. The key amino acid players in
protein-ligand interactions in the current study were Lys5, Met6, and Ala7 positioned in the coils, and Gly124 and Val125 positioned
in the pB-sheets. The SASA profile of protein-ligand complex remained stable throughout the process of simulation similar to the
earlier findings?.

Molecular interaction of 7K3T with the ligands after MD simulation displayed hydrophobic bonds occurring majorly, with 4.0 A
cut-off distance, between aliphatic carbon of protein and aromatic carbon of ligands, because of the presence of aromatic rings in
small ligand molecules, wherein the mostly involved residues were Leu, Val, Ile, and Ala in the side-chains, as reported earlier
also®. We found the involvement of Met6, Ala7, Phe8, and Tyr126 in hydrophobic interaction of EWBC and/or INMW with 7K3T,
while in 7K3T-X7TW complex, no hydrophobic interaction was detected. The H-bond was the second most frequent interaction
type, followed by m-mt stacking involving the aromatic ring of Phe8 in 7K3T-EWBC, and 7K3T-INMW, in addition to Tyr126 in the
latter.

Binding free energy calculation for some selected natural compounds with 3CLpro showed values ranging from —70.41 kcal/mol
(rutin) to -38.92 kcal/mol (podocarpusflavon-B)°, —42.42 kJ/mol (calycin), and -57.85 kJ/mol (rhizocarpic acid)*, which were higher
compared to our findings. Herein, the net binding free energy in 7K3T-INMW was more favorable than 7K3T-X7TW and 7K3T-
EWBC. Van der Waals interactions mainly contributed to the net binding free energy, followed by free energy of solvation for polar
non-polar combined residues, and electrostatic free energy component. Thus, 7K3T-INMW represented lowest net binding free
energy (-121.36 kJ/mol) conferring INMW greater receptor binding potentiality. Whereas, other ligands i.e., X7TW (-114.17 kJ/mol),
and EWBC (-78.96 kJ/mol) also demonstrated favorable binding free energies with SARS-CoV-2 3CLpro, suggesting that all the
ligand molecules achieved thermodynamically stable and strong complex with the SARS-CoV-2 3CLpro.

The current study authenticated, by MD simulation and docking analysis, the inhibitory property of bioactive antiviral
phytocompounds L-hyoscyamine, eupatorium and alkaloid L27, due to their good binding affinities and energetically stable
complex formation potentiality with 3CLpro of SARS-CoV-2. The physicochemical and pharmacokinetic properties interpreted with
ADMET profile and bioavailability score indicated their suitability as potential drug candidates against COVID-19.
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