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ABSTRACT 

Pfizer researchers reported in 2018 that lipophilic efficiency (LipE) is an 

important metric that is increasingly being applied to medicinal chemistry 

drug discovery programs. In this perspective, drug discovery examples have 

been strictly applied when adopting LipE to guide medicinal chemistry lead 

optimization toward candidate drugs with exceptional efficacy and safety in 

vivo potential, especially when guided by optimization based on 

physicochemical properties. In general, most medicinal chemists only consider 

potency and try to increase it during hits and lead optimization or when 

studying the structure-activity relationship. It should be noted that 

lipophilicity should be considered in conjunction with potency variations to 

ensure both the safety (drug-likeness) and the efficacy of the candidate drug. 

Therefore, the aim of this study is to identify successful potential leads against 

3CL-pro and optimize them for maximum potency and safety in COVID-19 

treatment with a design strategy approach. 3CL-pro inhibitors with lipophilic 

efficacy and related bioactivity data were obtained from the Chembl database 

and analyzed based on relationship between LipE and logP (lipophilic). The 

2D physicochemical descriptors of the compounds were calculated. 

Quantitative Structural-Activity Relationships (QSAR) model was built and 

bioactivities of novel compounds were predicted while molecular mechanism 

was inferred by docking assay. Based on analysis, 80 novel compounds were 

found, 6 of the novel compounds (36, 37, 46, 47, 77 and 79) revealed an 

increase in both LipE and potency with logP decrease, which makes them 

better alternatives to existing 3CL-pro inhibitors in the treatment of COVID-

19. 
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1. INTRODUCTION 

From a global public health and socioeconomic perspective, there is an urgent expectation to come-up with a rapid intervention that 

includes effective vaccines and antiviral drugs to stop the spread of the current pandemic virus [1] designated as coronavirus 

disease 2019 (COVID-19), broadcasted by the World Health Organization a pandemic [2, 3]. The infection inhibits the liver, 

respiratory and central nervous systems, the digestive system of humans and animals. Thus the resent name, SARS-CoV-2 agreed 

upon by scientist due to 82% similarity with the known Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) [4-6]. The 

SARS-CoV-2 principle protease (Mpro), also identified as chymotrypsin-like (3CL) protease (3CLpro), is a non-structural protein 

playing crucial role through cleavage of the virus-encoded polyproteins for replication and maturation (Coro 21).  By so doing, it is 

rendered as an alluring quarry for the upshot of efficacious antiviral drugs against SARS-CoV-2 virus [7, 8].  

The 3CLpro homodimer enzyme (EC: 3.4.22.69; optimal activity at pH 7.5 and 42 ° C) is largely maintained amid members of 

Coronaviridae with approximately 40-44% sequence homology. It has three structural segments consisting of domain I (residue 8 - 

101) and domain II (residue 102 - 184),  with the pair having beta-barrel motifs representing the catalytic region of chymotrypsin, as 

well as domain III (residue 185 - 200), having helical structure participating in the protein dimerization and enzyme activation [9-

13]. A valid approach necessary to design potent drugs for SARS-CoV-2 infection requires the interaction mechanism of protein-

ligand. These protein-ligands exhibit an important role in structure-based drug design, while enhancing steric compatibility of drug 

agents is an effective strategy for generating energy-efficient binding of drug agents to target receptors [14]. 

Leeson and Springthrope [16] initially proposed ligand lipophilicity efficiency (LLE or LipE) [15]. And various studies 

conducted on this ligand have proofed it to be an effective and direct means of evaluating the quality of research compounds. 

Safety of the compounds is accessed by relating lipophilicity and potency. LipE tries to maximize acceptable minimum lipophilicity 

per unit in vitro or in basic terms, to enhance the activity while sustaining low lipophilicity [16].  LipE is estimated as logP (or log D) 

minus logarithm of ligand potency (pKd, pKi or pEC50) [17]. Practically, instead of measuring log P, the computed value of clog P 

is commonly adopted together with the most pertinent in vitro strength to predict in vivo efficacy [18]. LipE can be adopted to 

recognize small sized molecules which would otherwise be overlooked due to its low potency and lipophilic value. This is 

advantageous in view of the fact that size and lipophilicity are largely increased following lead optimization. Thus using small 

quantity of LipE, makes less lipophilitic compounds a beneficial starting point [17, 19, 20].  

In recent time, LipE has gained popularity as a direct and important method to modulate lipophilicity, with examples to show 

for its use in drug optimization. Some notable examples worth mentioning include; CB2 agonists [24], CB2 agonists/CB1 agonists 

[25], soluble epoxide hydrolase inhibitors [35], twofold PI3K/mTOR inhibitors [27], HIV non-nucleoside reverse transcriptase 

inhibitors [28], ATP-competitive Akt inhibitors [26], design of a potent cyclin-dependent kinase 2 (CDK2) inhibitor [21, 22] and 

protein kinase B inhibitor [23] (see [29, 30] for review). Hence this study aims to select successful leads as starting points towards 

optimization to design more potent and drug-like clinical candidates as inhibitors of 3CL-pro. 

 

2. MATERIALS AND METHODS 

2.1. Collection of data and dataset groundwork 

The trivial name, source, lipophilic efficiency metrics (LipE), experimental lipophilicity (AlogP) and biological activities (IC50) of 

3CLpro inhibitors were obtained from the ChEMBL database. A total of 15 coronavirus 3C-like proteinase Inhibitors were retrieved 

on the basis of avail chemical structures with corresponding bioactivities (IC50) (Figure 1). Bioactivities (IC50) were subsequently 

adjusted to pIC50 adopting the expression pIC50 = (-log (IC50 X)). 3CLpro inhibitors chemical structures were downloaded from the 

ChEMBL database as smiles which were then changed to (2D) SDF format on DataWarrior v5.0.0. [31].  

 

2.2. Analysis of Lipophilic efficiency  

The lipophilic efficiency of retrieved dataset in relation to their corresponding potency (pIC50) and lipophilicity (logP) was carried 

out using DataWarrior v5.0.0 
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2.3. 2D QSAR study 

The potency of a compound must be quantified by molecular descriptors in order to build a QSAR model [32] and so based on this, 

CDK descriptor version 1.0 was adopted for the computation of varied descriptors in the following groups: Hybrid features, 

Constitutional properties, Topological properties, Electronic properties and Geometric descriptors. The computed properties were 

organized in a matrix format. These computed properties were preprocessed to determine the correlation coefficient cut-off of 0.99 

based on a variance cut-off of 0.0001 and take-away invariables (constant column) by using JFrameVWSP version 1.0. The dataset of 

28 molecules retrieved from literature [33] was separated into the test and training dataset by adopting Kennard-Stone method [34]  

QSAR model validation is essential to assess how reliable a developed model is [35]. This is usually achieved by evaluating the 

internal stability and predictive ability of the QSAR models.  In this study, the QSAR model developed was authenticated using 

leave-one-out (LOO) method to achieve internal validation. This was performed by removing a molecule, creating and 

authenticating the model against the individual molecule for all the Q2 (rCV2) values and documented. Equation (1) was used to 

calculate rCV2 (cross-validation regression coefficient) to describe the internal stability of the model. 
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Where Y in the stated equation represents the training dataset average activity value. Ypred and Yobs stands for the predicted and 

observed activity values correspondingly. It is worthy of note that, rCV greater than 0.5 proposes a realistically robust model [36]. 

Sequel to the process of internal validation, QSAR model’s high predictive power was projected from an external test set of 

compounds not applied in building the QSAR model. The predictive capacity or external validation obtained was determined by 

predictive R2 (Rpred2) based on equation (2). 
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Y(test) and Ypred(test) is the observed activity and predicted values for test set compounds respectively. 

Y(training) is the average bioactivity of compound in the training set.  

QSAR model (Rpred2) greater than 0.6 is the acceptable predictive power for the test set molecules [37-39].  

 

MLR method was used to develop QSAR model from the dataset to exam potential leads against 3CLpro inside a training 

dataset (28 compounds). CDK algorithm was used to calculate the total molecular descriptor (108) for individual compound. 

 

2.4. Molecular docking 

The three-dimension crystal structure of (PDB: 1uj1) from the protein databank was retrieved to prepare the target SARS 

coronavirus 3C-like proteinase (3CLpro) [40]. Discovery studio 2017R2 was employed to remove all heteroatoms while Pymol tool 

for non-essential water molecules. Subsequent to receptor and ligands preparation, this study utilized PyRx, AutoDock Vina option 

based on scoring functions to perform molecular docking analysis. PyRx, AutoDock Vina exhaustive search docking function was 

used for the analysis. Upon successful minimization process, the resolution of the grid box was centered at 76.0065 ×-11.5107 × 

18.0445 on the x, y and z axes correspondingly at grid dimension 25x 25 x 25 Å to specify the binding site (Figure 14b). 
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Figure 1: Raw data with corresponding bioactivities (IC50) 

 

3. RESULTS AND DISCUSSION 

Figure 2 shows the relationship between potency (pIC50), lipophilicity (logP) and lipophilic efficiency (LipE) of 3CL-pro inhibitors, 

which is useful in lead selection and optimization as discussed in the section below: 

 

3.1. Iso-LipE 3CLpro inhibitors 

Multiple combinations of pIC50 and logP can lead to the same LipE. On this account, having the knowledge of LipE alone for 

molecule is not informative [50].  It is necessary to interpret 3CLpro inhibitors in the LipE plot format, to give insight into required 

procedure for optimization-oriented designs. Based on our analysis, compound 2 had a pIC50 value of 5 with a measured logP of 

6.01, resulting in a LipE of -1.01 (Figure 3). Although compound 8 is slightly less potent with a pIC50 value of 4.82, it had a logP of 

5.84 which resulted in a comparable lipophilic efficiency of -1.02.  

If we consider only the potency, compound 2 ought to appear superior to compound 8. These two compounds are comparably 

attractive and isoefficient for follow-up. In addition, taking into consideration that both compounds 2 and 8 have logP values of 6.01 

and 5.84 respectively, which exceed the required optimum for ADME (Absorption, Distribution, Metabolism, and Excretion) 

properties (logP: ≤ 5), none is considered a better starting place than the other. Also, compound 11 had a pIC50value of 4.4 with a 

measured logP of 5.06, resulting in a lipophilic efficiency of -0.66 while compound 15, with similar potency of pIC50 valueof 4, had a 

logP of 4.67 resulting in a similar lipophilic efficiency of -0.67 (Figure 3). Given that compound 11 had a logP of 5.06 which exceed 

the required optimum for ADME properties (logP: ≤ 5), compound 15 is a better starting place. In fact, both compounds are 

isopotent i.e. they have similar pIC50 values. This highlights the essence of analyzing LipE changes in the context of logP for 

selecting a lead compounds [41]. 
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Figure 2: Relationship between pIC50 and logP of 3CL-pro inhibitors in relation to their respective LipE 

 

 

 
Figure 3: Isoefficient 3CL-pro inhibitors 

 

3.2. Iso-potent Efficiency Changes of 3CLpro inhibitors 

Unlike compound 2 and 8; 11 and 15, the compounds with comparable pIC50 can have different LipE. Not realizing logP would 

make then look alike but then again, the compounds with lower logP will possess a higher lipophilic efficiency [42]. This is an 

isopotent efficiency change. It is illustrated by the potency of compounds 6 and 8; 13 and 14, in which reduction in LipE are seen 

while pIC50 is sustained, which lead  to an increase in LipE (Figure 4).Compounds 6 and 8; 13 and 14 are same in terms of pIC50, 

irrespective of logP ranging from 3 to 6. Of all these compounds, 13 have appreciably high LipE when compared with the other 

compounds, thus presenting it a valuable lead which would have been lost in the subset of equipotent compounds without a LipE-

based analysis.  
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Figure 4: Isopotent 3CL-pro inhibitors 

 

3.3. Isolipophilic LipE Changes of 3CL-pro inhibitors 

Invariant logP in relation with pIC50 changes throughout a set of derivatives resulting in isolipophilic modifications of LipE. 

Generally, isolipophilic variation in efficacy occurs with twosome of enantiomers, even though they are not limited to such 

examples [42]. This is observed in compound 12 and 13 in which an increase in LipE are observed while lipophilicity is maintained. 

This resulted in an insignificant increase in potency (Figure 5). Compound 12 and 13 are same in terms of their logP values, despite 

pIC50 values of 4.35 and 4.22 respectively. 12 possessed slightly higher LipE, making it an indispensable lead. Because logP remain 

the same, assessment of isolipophilic LipE variations cannot be distinguished from a potency-centric analysis. 

 

 

 
Figure 5: Isolipophilic 3CL-pro Inhibitors 

 

At the same time, decreasing logP and improving potency results in a very large increase in lipophilic efficiency [42-44]. This 

was achieved by generating novel compounds based on structural modification of the starting chemical entity. Therefore, in a 

search for a starting chemical specie from our dataset, Compound 1 (with the lowest logP value) and 10 (with the highest potency) 

reveals an efficiency increase (3-fold) of -0.78 and 2.29 respectively with potency and logP decrease (figure 6). Given that compound 

1 had a logP of 6.03 which is over what is optimal for ADME properties (logp: ≤ 5), compound 10 with logP value of 2.11 is a better 

starting chemical entity. 
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Figure 6: 10-1 showing an efficiency Increase decrease in potency and logP 

 

Quantitative structural-activity relationship analysis (QSAR) is a successful method that has been adopted in reasonable drug 

design and in understanding drug action mechanism. Bioactivities of compounds are rated as a function of various physicochemical 

properties in QSAR studies. This makes clear how the variation of biological activity is based on alteration in the chemical 

structures [45]. These physicochemical properties are quantified in the form of descriptors. Given this, we designed a set of new 

compounds from compound 10 with a de novo design approach using DataWarrior v5.0.0. DataWarrior adopted an evolutionary 

method that mimics nature by randomly transforming known molecular configurations having small changes to establish novel 

generations with possibly better structures. Each generation of molecules are tested for robustness with a set of modifiable 

principles and the most auspicious structures serve as a starting point for subsequent generation. The mutation algorithm executes 

vicissitudes such as bond order changes, ring aromatisations, replacing an atom, atom insertions, substituent migrations just to 

mention a few. 

  

 
 

Figure 7: Novel compounds generated based on the structure of the parent molecule (compound 10) (a = Compound 10; b = 

Compound 17) 

 

Every structure to be mutated is firstly evaluated for all possible mutations concerning how extensively the alteration will 

increase or decrease the drug-likeness. Mutations with alteration in the required direction are assigned a higher probability than 

mutations that reduce drug-likeness. Mutations that would create high ring tension are eliminated from the list. Based on this 
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approach, 81 structures were created that retain the scaffold of compound 10 with the corresponding fitness scores (Figure 7). 

Compound 17 of the second generation holds the highest fitness scores (0.98817), which makes it closest to the original structure 

(compound 10, fitness score = 1,000). 

Tsai et al., (2006) [33] discovered 28 novel family of SARS-CoV Protease Inhibitors with their corresponding IC50 values and 

shared the same scaffold as compound 10 (Figure 8). In order to predict the bioactivities of the newly generated datasets, a QSAR 

model was built from the 28 datasets having the same scaffold as the novel compounds. 

 

 
Figure 8: Retrieved chemical structures with same scaffold as compound 10 

 

To analyze the multiplicity of the testing and training set, the Principal Component Analysis approach (PCA) was adopted and 

the PCA was executed with structural descriptors evaluated for the entire data set. This approach helped to identify homogeneities 

in the total data, as well as to describe the spatial location of the samples to help in dividing the data into train and test sets. 

 The PCA result revealed three main components (PC1, PC2 and PC3), elucidated as 99.998% of the entire variables which are as 

follows: PC1 = 41.975%, PC2 = 33.541% and PC3 = 24.482%. Given that the first three principal components can account for most of 

the variables, the different score plot is a dependable exemplification of the spatial allotment of points for the whole data. The 

compounds distribution over the initial three principal components space is shown by the plot of PC1, PC2 and PC3 (Figure 9) with 

PC1 and PC2 covering the largest variability in the total data (Figure 10). This number revealed that the samples of the test and 

training sets appear to be uniformly strewed in the three-dimensional space and consequently, it was possible to divide the dataset. 

In addition, the compounds in the training sets are represented in the whole dataset. 
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Figure 9: Analysis of the primary component of the test and train sets 

 

 

 
Figure 10: Analysis of principle component with PC1 and PC2 

 

The next step after analyzing the separation of the dataset into the test and training set was to identify and choose the major 

factors that are most important for the SARS-CoV protease inhibition activity of the 28 new inhibitors. Genetic algorithm (GA) was 

applied as the method for selecting variables to select only the most important (relevant) combinations to obtain the model with the 

utmost predictive power by employing training dataset. The three (3) most important descriptors according to the GA approach, 

are SCH-5, C1SP3 and khs.ddsN based on the variance cut-off of 0.01 and inter correlation cut-off of 0.9. In this study, these 

descriptors have been shown to be related to the studied biological response and are described in Table 1. 

In general, the quality of a model is described by its predictability in a QSAR study. The techniques adopted in this study were 

performed to correlate physicochemical descriptors of 28 3CL-pro inhibitors from their inhibitory training set. Physicochemical 

descriptors were taken as individual variables and the inhibitory activity of the 3CL-pro target was taken as dependent variables.  
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The data set of 28 compounds was divided into training set of 19 compounds in order to create and test the model. The datasets 

were subsequently utilized to construct the model and a test set of 9 compounds, which were used to test the structured model. The 

resulting linear equation based on the MLR is as follows (equation 3): 

 

( ) ( )

( ) ( )

50  4.52085 0.2233  0.2688 0.08067  1 3 

             4.92257 0.79286 5 0.51868 0.18816 .

pIC C SP

SCH khs ddsN

=  − 

+  − − 
                      (3) 

 

R2 (regression coefficient) = 0.82776,  

SEE (standard error of estimate) = 0.28645,  

Q2 (cross-validation regression coefficient) =0.6468,  

SDEP (standard deviation of error of prediction) = 0.3829 

r2 (LOO) ((Leave out one cross validation) = 0.7077 

PRESS (predicted residual sum of squares) = 1.23081 

F (variance ratio) = 24.02849 (DF: 3, 15), r2pred (external predictive power) = 0.80913 

 

 
Figure 11: Experimental and Predicted bioactivities of the Train and Test set 
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Equation (5) suggests that the model established with GA-MLR presented an excellent tetragonal correlation coefficient (R2) 

value with both internal and external predictive power (r2pred) having excellent values. The developed QSAR model derived by 

GA-MLR showed a noteworthy connection between dependent variable (pIC50 values) and the carefully chosen descriptors 

(independent variables).  

An 82.8% correlation exists among the activity and selected descriptors in the training dataset, determined based on value of the 

regression (R2=0.82776). Meanwhile, the value of the cross-validation regression coefficient (Q2 = 0.6468) put forward ~64.7% 

prediction exactitude of this QSAR model. 

Figure 11 shows the predicted and observed biological activities of the training and test datasets. Figure 12 is the predicted pIC50 

plot versus the experimental pIC50 which revealed that there is a good agreement between the predicted and experimental activity 

values. 

 

 

Table 1: GA selected descriptors with their corresponding description 

S/N Descriptors Description Contribution 

1 C1SP3 
Singly bound carbon bound to one other 

carbon 
Negative Contribution 

2 SCH-5 Simple chain, order 5 Positive Contribution 

3 khs.ddsN Description not available in the database Negative Contribution 

 

 

 
Figure 12: The predicted pIC50 values using MLR modeling against the experimental (observed) pIC50 values 

 

The three descriptors for the best model (GA-MLR) used for PC1–PC2 loadings plot is shown in Figure 13. For the loadings, it 

was affirmed that the compounds with greater biological activity values, situated on the right side presented a larger influence on 

the SCH-5 descriptor located on the same side as in Figure 8. Conversely, compounds with lesser biological activity values on the 

left side have extra distinct contributions from the other descriptors (mostly from khs.ddsN and C1SP3).  
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Figure 13: PC1–PC2 loadings plot using the three descriptors for the best model (GA-MLR) 

 

The Y randomization test performed to guarantee that there are no random correlations was used in this study to validate the 

recognized QSAR model and also to ensure that the selected descriptors are not random. Therefore, results of the model should be 

of low statistical quality. Random MLR models created was done randomly by rearranging the dependent variable while 

maintaining the individual variables. The recently built QSAR models will predictably have significant R2 and Q2 low values for 

more than a few trials, thus confirming that developed QSAR models are robust. Approximately hundred trials of Y-randomization 

were conducted in this study which gave lesser values for R2 and Q2, thereby authenticating the initial model (the established GA-

MLR model) (Figure 14). 

 

 
Figure 14: R2 train and Q2LOO values following numerous Y-randomization tests for GA-MLR 

 

The residue for the predicted values of pIC50 for the training and test sets against the experimental pIC50values is plotted as 

presented in Figure 15. It was observed that the model did not indicate relative and systematic error at all, since the propagation of 

the residues on the horizontal lines is random. 
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Figure 15: The residual against the experimental pIC50 by adopting GA-MLR 

 

Furthermore, QSAR model was utilized to envisage the bioactivities of the novel compounds from their respective 2D 

physicochemical properties (SCH-5, khs.ddsN and C1SP3). The compound in generation 0 represents the parent molecule 

(compound 10), and has a predicted pIC50 value of 4.49. Twenty compounds across generation 3-10 have a predicted pIC50 values 

higher than the parent molecule, which makes them more potent than the parent molecule (Figure 16). From the predicted pIC50 we 

computed LipE and clogP for each of the novel compounds using Datawarrior v5.0. 

 

 
Figure 16: De novo synthesized compounds with higher predicted bioactivities 
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Increase in LipE can be attained by modifying the ligand to impact lipophilicity, potency or both. The biggest assured impact of 

LipE frequently occurs when adjustments improve potency and concurrently lower lipophilicity [33]. Based on our design strategy, 

6 of the novel compounds (36, 37, 46, 47, 77 and 79) revealed an increase in both LipE and potency with logP decrease (Figure 17). 

 

 

 
Figure 17: Optimized compounds based on bioactivities, logP and LipE 

 

In order to have a better understanding of the molecular mechanism underlying the action of the unique compounds selected on 

the basis of their bioactivities and LipE, molecular docking was employed in this study. In the present study, the six selected 

compounds and their parent molecule were docked into the binding pocket of SARS coronavirus 3C-like proteinase for their 

inhibitory (antagonistic) (Figure 18a and b) properties. Compound 77 showed a better binding affinity, -7.4kcal/mol, when 

compared with the parent molecule (compound 10; -7.3kcal/mol) and thus is considered as the lead compound (Figure 19).  

 

 

 
Figure 18: (a) Grid box within which the ligand binds 76.0065 * -11.5107 * 18.0445 along the x, y and z axes correspondingly (b) 

Compounds within binding pockets 

 

The highest binding energy of -7.4kcal/mol attributed to compound 77 is considered to be as a result of chemical interactions at 

the receptor’s active site (Figure 20a) which includes: Five (5) hydrogen bonds involving GLN110, ASN151 and HIS246 residues; 

Three (3) hydrophobic interactions involving VAL104, LEU202 and ILE249 residues. However, that of compound 10 serving as the 

reference molecule presents the following chemical interactions at the binding pocket (Figure 20b): Four (4) hydrogen bonds 

involving ASN151, ASP295 and THR111 residues with two (2) hydrophobic interactions involving ILE249 and PRO293. Therefore, 
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the consequence of higher binding affinity of compound 77 within SARS coronavirus 3C-like proteinase drug-able pocket is due to 

the presence of more hydrophobic interactions and more hydrogen bonds when compared to compound 10.  

 

 

 
Figure 19: Binding affinities of selected 3CL-pro inhibitors 

 

Hydrogen (H)-bonds potentiates varied cellular functions by accelerating molecular interactions. In order words, hydrogen 

bonds are considered to be facilitators of protein-ligand binding [48, 49]. Previous studies have shown that interdependent receptor-

ligand H-bond pairings potentiate high-affinity binding, which corresponds to an increase in binding affinity [50]. Additionally, 

ASN151 was predicted to be universally implicated in hydrogen bonding with the ligands within SARS coronavirus 3C-like 

proteinase drug-able pocket. 

 

 

 
Figure 20: 3D and 2D interactions (a) compound 77 (b) compound 10 

 

4. CONCLUSION 

This study has maximized the combination of LipE and logP to select potent leads against SARS coronavirus 3C-like proteinase 

Inhibitors and to optimize these leads based on changes in their physicochemical properties in order to discover highly efficient and 
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reliable clinical candidates for the cure of COVID-19. Six novel compounds (36, 37, 46, 47, 77 and 79) were suggested for further in 

vitro and preclinical testing based on their predicted efficiencies values and potency. 
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