Effects of Novel Silver (I) N-Heterocyclic Carbene Complexes on Mycotoxin Producing Fungi and Biofilm Forming Microorganisms

Esin Poyrazoğlu Çoban\(^1\), Engin Ertuğrul\(^2\), Rukiye Fırıncı\(^2\), Halil Bıyık\(^1\), Muhammet Emin Günay\(^2\)

\(^1\)Department of Biological Sciences, Faculty of Arts and Sciences, Adnan Menderes University, Aydın, Turkey,
\(^2\)Department of Chemistry, Faculty of Arts and Sciences, Adnan Menderes University, Aydın, Turkey

Correspondence:
Esin Poyrazoğlu Çoban,
Faculty of Arts and Sciences, Adnan Menderes University,
Aydın, Turkey,
Phone +90 256 2182000,
Email: epoyrazoglu@adu.edu.tr,
Orcid id: 0000-0002-3921-5362

Citation

ABSTRACT
Ag (I) complexes were prepared for a series of NHC substituents. Firstly, NHC precursors (1-9) were synthesized. In the second step, Ag (I) -NHC complexes (10-15) were synthesized. Structure of silver (I) N-heterocyclic carbene complexes was analysed using 1H- and 13C-NMR spectroscopy. The activity of synthesized and characterized silver complexes on mycotoxin producing fungi and biofilm-forming Gram negative or positive bacteria and *Candida albicans* was investigated. As a result, it was determined that the most effective compound was 14, 15 and 13 respectively. Especially, compound 14 has been shown to have a high effect (12-15mm/16-64µg/mL) against *Escherichia coli* ATCC 35218, *Staphylococcus aureus* ATCC 25923, *Pseudomonas aeruginosa* ATCC 35032, *Listeria monocytogenes* ATCC 19112, *Candida albicans* ATCC 10231, *Aspergillus parasiticus* NRRL 502. The results of antimicrobial activity and microfungus micelle development were also found to be compatible.

Keywords: Silver (I) N-Heterocyclic Carbene Complexes, Mycotoxin, Fungi, Biofilm, Microorganisms
1. INTRODUCTION

Foods are a suitable source for the growth of microorganisms. But it is also important that people can eat healthy and long-term food. Bacterial and fungal contaminants that may occur in foods cause food degradation and also threaten human health. In particular, fungi that cause toxin formation in foods produce mycotoxins as secondary metabolites. The mycotoxins are a serious problem in dried foods such as figs, peanuts, peppers, apricots, hazelnuts (Goyal et al., 2016). Furthermore, biofilm-forming microorganisms both threaten the lives of people and cause economic losses in the health and food sector (Rabin et al., 2015).

Recently, there has been a need to seek alternative agents that can inhibit the growth of fungi that produce mycotoxins and traditional antibiotics used against infectious diseases that are bacterial resistant and difficult to treat (Chen et al., 2013; Ait et al., 2015). For this purpose, when metal-N-heterocyclic carbene (NHC) chemistry has been examined since 2006, it is seen that there are many synthesized Ag(I)-NHC complexes (Ivan and Chandra, 2007).

In this study, the effects of synthesized silver(I) N-heterocyclic carbene (Ag(I)-NHC) complexes were investigated on mycotoxin producing fungi and biofilm-forming microorganisms.

2. MATERIALS AND METHODS

2.1. Synthesis of Imidazolium Salts (1-3,5-7)

Compounds (1-3) and benzyl bromides were prepared by following a previously described method (Firinci et al., 2018); (Figure 1). 2,4,6-trimethylbenzyl chloride/2,3,5,6-tetramethylbenzyl bromide/2,3,4,5,6-pentamethylbenzyl chloride (1.25 mmol) was added over (N-octadecyl-imidazole) (4, 1.25 mmol) in toluene (15 mL) at 80°C. The resulting mixture was heated to 80°C and stirred at this temperature for 24 h. After, pentane (15 mL) was added to the mixture and a white solid crystal was obtained. The solid obtained was washed with pentane (3x10 mL) and the crude product was recrystallized from CH\(_2\)Cl\(_2\)/pentane (Rohini et al., 2013); (Figure 2).

![Fig. 1 Synthesis of NHC precursors 1-3](image1)

![Fig. 2 Synthesis of NHC precursors 4-7](image2)

N-octadeyl-N’-(2,4,6-trimethylbenzyl)imidazolium chloride, (5)

Yield: (0.5189 g, 85%). m.p.: 80-81°C. \(^1\)H-NMR (δ, 400 MHz, CDCl\(_3\)): 0.82-0.85 (t, 3H, \(J = 7.0\) Hz, CH\(_3\)(CH\(_2\))\(_3\)CH\(_2\)N); 1.18-1.27 (m, 30H, CH\(_3\)(CH\(_2\))\(_3\)CH\(_2\)N); 1.85-1.88 (m, 2H, CH\(_3\)(CH\(_2\))\(_3\)CH\(_2\)N); 2.24 (s, 6H, NCH\(_3\)C\(_6\)H\(_5\)(CH\(_3\))\(_2\)-o-CH\(_3\)); 2.25 (s, 3H, NCH\(_3\)C\(_6\)H\(_5\)(CH\(_3\))\(_2\)-p-CH\(_3\))
N-octadeyl-N’-(2,3,5,6-tetramethylbenzy)limidazolium bromide, (6)
Yield: (0.5751 g, 84%). m.p.: 101-102 °C. 1H-NMR (δ, 400 MHz, CDCl3): 0.82-0.85 (t, 3H, J = 7.0 Hz, CH3(CH2)6CH2N); 1.21-1.28 (m, 30H, CH2(CH2)6CH2N); 1.82-1.94 (m, 2H, CH2(CH2)6CH2N); 2.16 (s, 6H, NCH2C6H5); 4.30-4.34 (t, 2H, J = 7.0 Hz, CH2(CH2)6CH2N); 5.65 (s, 2H, NCH2C6H5); 6.82 (s, 1H, NCH(CH2)6CH2N); 7.34 (s, 1H, NCHCN); 10.55 (s, 1H, NCHN). 13C-NMR (δ, 100 MHz, CDCl3): 14.1 (CH3(CH2)6CH2N); 15.8 (CH2(CH2)6CH2N); 16.9 (NCH2C6H5); 20.4 (NCH2C6H5); 22.6, 26.2, 28.9, 29.0, 29.3, 29.4, 29.5, 29.6, 29.6, 29.7, 30.3, 30.4, 31.9 (CH3(CH2)6CH2N); 48.6 (NCH2C6H5); 50.3 (CH2(CH2)6CH2N); 120.7 (NCHCN); 121.4 (NCHCN); 128.0, 133.5, 134.1, 135.0, 135.8 (NCH2C6H5); 137.1 (NCHN).

N-octadeyl-N’-(2,3,4,5,6-pentamethylbenzy)limidazolium bromide, (7)
Yield: (0.6272 g, 97%). m.p.: 105-106°C. 1H-NMR (δ, 400 MHz, CDCl3): 0.82-0.85 (t, 3H, J = 6.5 Hz, CH3(CH2)6CH2N); 1.20-1.28 (m, 30H, CH2(CH2)6CH2N); 1.85-1.92 (m, 2H, CH2(CH2)6CH2N); 2.19 (s, 12H, NCH2C6H5); 2.23 (s, 6H, NCH2C6H5); 4.30-4.34 (t, 2H, J = 7.0 Hz, CH2(CH2)6CH2N); 5.64 (s, 2H, NCH2C6H5); 6.83 (s, 1H, NCHCN); 7.32 (s, 1H, NCHN); 10.51 (s, 1H, NCHN). 13C-NMR (δ, 100 MHz, CDCl3): 14.1 (CH3(CH2)6CH2N); 16.7 (NCH2C6H5); 16.8 (NCH2C6H5); 17.2 (NCH2C6H5); 22.6, 26.2, 28.9, 29.3, 29.4, 29.6, 29.6, 29.7, 30.3, 31.9 (CH3(CH2)6CH2N); 49.1 (NCH2C6H5); 50.2 (CH2(CH2)6CH2N); 120.6 (NCHCN); 121.1 (NCHCN); 125.4, 133.6, 133.7, 137.2 (NCH2C6H5); 137.5 (NCHN).

2.2. Synthesis of Ag(I)-NHC Complexes (8-13)
A solution of imidazolium salt (1-3,5-7) (1.0 mmol), Ag2O (0.5 mmol) and activated 4Å molecular sieves in dry dichloromethane (30 mL) was stirred at room temperature for 18h in the dark condition. The mixture was filtered and the solvent removed under vacuum. The filtrate was recrystallized with dichloromethane / n-pentane solution at room temperature. The synthesis of Ag(I)-NHC complexes 8, 9 and 10 were reported by our group (Firinci et al., 2018); (Fig.3).

![Fig. 3 Synthesis of Ag(I)-NHC complexes 8-13](image)

(Bis[N-octadeyl-N’-(2,4,6-trimethyl]imidazole-2-ylidene)AgI][AgCl], (11)
Yield: (0.3133 g, 50%). m.p.: 65-66 °C. 1H-NMR (δ, 400 MHz, CDCl3): 0.85-0.88 (t, 6H, J = 6.5 Hz, CH3(CH2)6CH2N); 1.24-1.28 (m, 60H, CH2(CH2)6CH2N); 1.77-1.80 (m, 4H, CH2(CH2)6CH2N); 2.23 (s, 12H, NCH2C6H5); 2.29 (s, 6H, NCH2C6H5); 4.05-4.09 (t, 4H, J = 7.0 Hz, CH2(CH2)6CH2N); 5.26 (s, 4H, NCH2C6H5); 6.50 (s, 2H, NCHCN); 6.86 (s, 2H, NCHCN); 6.91 (s, 4H, NCH2C6H5); 22.7, 26.4, 29.1, 29.3, 29.4, 29.5, 29.6, 29.7, 30.1, 31.9 (NCH2C6H5); 49.6 (NCH2C6H5); 52.3 (NCH2C6H5); 119.7 (NCHCN); 120.4 (NCHCN); 127.6 (Ar-C); 129.7 (Ar-C); 137.7 (Ar-C); 139.0 (Ar-C); 181.0 (Ag-Carboxy).
Aspergillus flavus
Pseudomonas aeruginosa
° 2004; ° 2014). Suspensions were homogeneously spread over the surface of the agar medium. Then a hole of 6 mm in diameter and depth was added on the growing fungus culture and shaken. So, fungus spores were enabled to pass into the solution. The conidial suspensions were counted and adjusted as 1x10^2 C.2.3. Antimicrobial Screening
The antimicrobial activities of all the synthesized compounds were determined by the disc diffusion method (Collins et al., 2004; CLSI, 2015) and the minimum inhibitory concentrations (MIC) were obtained by broth dilution method (Jorgensen and Ferraro, 2009; CLSI, 2009).

2.3.1. Cultivation Condition of Microorganisms
Three mycotoxin producing fungi (Aspergillus flavus NRRL 500, Aspergillus parasiticus NRRL 502 and Aspergillus ochraceus NRRL 398) and four bacteria (Pseudomonas aeruginosa ATCC 35032, Staphylococcus aureus ATCC 25923, Staphylococcus epidermis ATCC 12228, Escherichia coli ATCC 35218) and one yeast culture (Candida albicans ATCC 10231) as biofilm-forming microorganisms were used in this study.

2.3.2. Preparation of Silver Ion Solutions
The stock solutions (1000µg/mL) of all the synthesized compounds were prepared in dichloromethane. Besides, commercial AgNO₃ (Sigma-Aldrich) solutions prepared at the same concentration was used as negative control.

2.3.3. Disc Diffusion Method
Synthesized silver carbene complexes were tested against biofilm-forming bacteria or yeast and mycotoxin producing fungi by agar well diffusion method (Collins et al., 2004; Clinical and Laboratory Standards Institute, 2015).

Bacteria and yeasts are activated in Tryptic Soy Broth medium at 30-37°C for 24 h. The concentrations of the activated cultures were adjusted to 0.5 Mc Farland standard tubes to give a concentration of 1x10^6 bacterial cells and 1x10^6 yeast cells/mL (Babahan et al., 2014; Çoban et al., 2017; Oyeka et al., 2018).

The fungi strains were cultured in Sabouraud Dextrose Agar (SDA) at 27°C for 3-5 days. The bacteria strains were cultured in Tryptic Soy Agar (TSA) at 37°C for 24 h. The yeast strains were cultured in Malt Extract Agar (MEA) at 30°C for 24 h (Abbaspazadeh et al., 2014; Çoban et al., 2017; Oyeka et al., 2018).

To test the antibacterial and antifungal of silver (I)-NHC complexes, Mueller Hinton Agar plates were used and 0.1 mL of suspensions were homogeneously spread over the surface of the agar medium. Then a hole of 6 mm in diameter and depth was made on top with a sterile stick and filled with 50 µL of the silver carbene complexes.
Plates inoculated with *Pseudomonas aeruginosa* ATCC 35032, *Staphylococcus aureus* ATCC 25923, *Staphylococcus epidermidis* ATCC 12228, *Escherichia coli* ATCC 35218 were incubated at 37°C for 24 h and *Candida albicans* ATCC 10231 were incubated at 30°C for 24 h and *Aspergillus flavus* NRRL 500, *Aspergillus parasiticus* NRRL 502 ve *Aspergillus ochraceus* NRRL 398 were incubated at 27°C for 5 days. The diameter of the inhibition zone was then measured. For bacteria, discs of Chloramphenicol (C30, Oxoid), Gentamycin (GN10 Oxoid), Tetracycline (TE30), Erytromycin (E15), Ampicillin (AMP10) and for yeast, disc of Nystatine (NS100) and for microfungi, discs of were used as Amphotericin B (AMB100), Clotrimazole (KTC10), Fluconazole (FCA25), Ketoconazole (CTL10), Nystatin (NS100) were as reference antibiotics (Ismaiel and Tharwat, 2014).

2.3.4. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC)

Minimum inhibitory concentration (MIC) was determined by the reported method (Jorgensen, and Ferraro, 2009; CLSI, 2009). Yeasts and bacteria were grown in Malt Extract Broth medium and Tryptic Soy Broth medium at 27-37°C for 24 h. The microfungi were inoculated in Sabouraud Dextrose Broth (SDA; Merck) at 27°C for 5-7 days.

The inoculums were adjusted according to 0.5 McFarland standard tubes. 96-well sterile Elisa Plate on was used for this test. 100 µL of Mueller Hinton Broth medium was added into each well. The stock solutions (2000 µg.mL⁻¹) were obtained by dissolving the substances in dichloromethane. Two fold dilutions (256-0.5 µg.mL⁻¹) were applied for MIC analysis. The lowest concentration in which the microorganism grows was evaluated as the MIC value. As positive controls, Streptomycin for bacteria and Fluconazole for yeast and microfungi were used in the dilution method.

The MBC and MFC is the lowest concentration of compounds desired to kill the microorganisms (Abbaszadeh et al., 2014; Saquib et al., 2019). In order to determine the MBC and MFC value, 0.01 mL of the mixture is taken from the wells where no growth was observed and spread onto Tryptic Soy Agar, Malt Extract Agar and Sabouraud Dextrose Agar plates. The plates were incubated at 27-30-37°C.

2.3.5. Effect of Ag(I)-NHC Compounds on Mycelium Growing

Sabouraud Dextrose Broth containing 50 mL medium in conical flasks of 250 mL was prepared and sterilized at 121°C for 15 min. Different concentrations of Ag(I)-NHC compounds were prepared as 0.0, 8.0, 12, 24, 36, 48, 60 µg.mL⁻¹. Spore suspension (0.2 mL) was added to the medium in each flask. The inoculated flasks were incubated at 27°C for 10 days (Ismaiel and Tharwat, 2014).

2.3.6. Determination of Mycelial Dry Weights

At the end of the incubation period, the fungal culture flasks were filtered by Whatman no.389 filter papers and dried at 80°C for 24 h (Ismaiel and Tharwat, 2014).

2.3.7. Statistical Analyses

Results were given using analysis of variance (ANOVA, SPSS software version 22).

3. RESULTS AND DISCUSSION

3.1. Preparation of The Imidazolium Salts (1-3,5-7)

The asymmetrically substituted imidazolium salts (1-3,5-7) were prepared from the treatment of N-butylimidazole/imidazole and benzyl bromide derivative (Figure 1, 2). Salts are stable to air and moisture both in the solid-state and in solution. The salts are soluble in CH₂OH, CH₂Cl₂, and CHCl₃ but insoluble in diethyl ether and hexane.

The chemical structure of the salts obtained was determined using 1H NMR. Results were consistent with the predicted structures. The resonances for NCH₃N protons give as a sharp singlet between at δ 10.50 and 10.85 ppm.

3.2. Preparation of the Ag(I)-NHC Complexes (8-13)

The general procedure for the preparation of Ag(I)–NHC complexes is shown in Figure 3. Complexes (8-13) were prepared from the treatment of the imidazolium salts with Ag₂O in dry CH₂Cl₂ at room temperature for 18 h in dark condition. The formation of the complexes was confirmed by the disappearance of the characteristic imidazolium ¹H NMR proton signals of the NHC precursors. The signals for the carbene carbons in Ag(I)–NHC complexes (11-13) appears 181.0, 180.9 and 177.5 ppm, respectively.
3.3. Antimicrobial Screening

The antibacterial and antifungal effects of Ag(I)-NHC complexes (compounds 13, 14, 15) against biofilm-forming bacteria or yeast and mycotoxin producing fungi were tested using agar well diffusion method. Inhibition zones (mm) of the Ag(I)-NHC compounds and AgNO₃ as negative control were listed in Table 1. The MIC test was applied to the compounds showing antimicrobial activity. Results were indicated in Table 2. In addition, inhibition zones (mm) of the reference antibiotics as positive control were given in Table 3.

<table>
<thead>
<tr>
<th>Test Microorganisms</th>
<th>Inhibition zone (mm)</th>
<th>Compounds</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Escherichia coli ATCC 35218</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923</td>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Staphylococcus epidermidis ATCC 12228</td>
<td></td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 35032</td>
<td></td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Listeria monocytogenes ATCC 19112</td>
<td></td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Candida albicans ATCC 10231</td>
<td></td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Aspergillus parasiticus NRRL 502</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Aspergillus ochraceus NRRL 398</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aspergillus flavus NRRL 500</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(–): No zone
(-): Zone did not occur.
NT: Not tested.

<table>
<thead>
<tr>
<th>Test Microorganisms</th>
<th>Compound 13</th>
<th>Compound 14</th>
<th>Compound 15</th>
<th>AgNO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MBC/MFC</td>
<td>MIC</td>
<td>MBC/MFC</td>
</tr>
<tr>
<td>Escherichia coli ATCC 35218</td>
<td>256</td>
<td>≥256</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923</td>
<td>256</td>
<td>≥256</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Staphylococcus epidermidis ATCC 12228</td>
<td>NT</td>
<td>NT</td>
<td>256</td>
<td>≥256</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 35032</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>
According to Table 1, the compound 13 showed high effect (15 mm) against *Pseudomonas aeruginosa* ATCC 35032 while the same compound demonstrated moderate effect (10 mm) against *Staphylococcus aureus* ATCC 25923 and *Aspergillus parasiticus* NRRL 502.
Besides, the compound had no effect against *Staphylococcus epidermidis* ATCC 12228, *Listeria monocytogenes* ATCC 19112, *Candida albicans* ATCC 10231, *Aspergillus ochraceus* NRRL 398, *Aspergillus flavus* NRRL 500, while the compound revealed slightly effect (8 mm) against *Escherichia coli* ATCC 35218. The compound 14 indicated high effect (15 mm) against *Candida albicans* ATCC 10231, while the same compound demonstrated moderate effect (11-12 mm) on *Staphylococcus aureus* ATCC 25923, *Pseudomonas aeruginosa* ATCC 35032, *Listeria monocytogenes* ATCC 19112, *Aspergillus flavus* NRRL 500. Besides it had low effect (8-9 mm) against *Escherichia coli* ATCC 35218 and *Staphylococcus epidermidis* ATCC 12228, while the compound 14 had no effect on *Aspergillus ochraceus* NRRL 398 and *Aspergillus flavus* NRRL 500. The compound 15 remarked high effect (14 mm) against *Aspergillus parasiticus* NRRL 502, while the compound expressed moderate effect (10-11-12 mm) on *Escherichia coli* ATCC 35218, *Staphylococcus aureus* ATCC 25923, *Listeria monocytogenes* ATCC 19112, and *Candida albicans* ATCC 10231. Nevertheless, the compound had no effect on *Pseudomonas aeruginosa* ATCC 35032, *Aspergillus ochraceus* NRRL 398 and *Aspergillus flavus* NRRL 500, while it inferred slightly effect (8 mm) against *Staphylococcus epidermidis* ATCC 12228. On the other hand, AgNO₃ as negative control displayed remarkable effect (11-15 mm) against biofilm-forming *Candida albicans* ATCC 10231 and mycotoxin producing *Aspergillus flavus* NRRL 500, *Aspergillus ochraceus* NRRL 398 and *Aspergillus flavus* NRRL 500. The negative control (AgNO₃) screened very low effect (7-9 mm) against the other biofilm-forming bacteria, while it had no effect on *Pseudomonas aeruginosa* ATCC 35032.

According MIC, MBC/MFC values, some of the compounds assayed signified noteworthy activity on the tested microorganisms (Table 2). For example, *Pseudomonas aeruginosa* ATCC 35032 (compound 13= 32 µg mL⁻¹, compound 14= 64 µg mL⁻¹), *Escherichia coli* ATCC 35218, *Staphylococcus aureus* ATCC 25923, *Pseudomonas aeruginosa* ATCC 35032, *Listeria monocytogenes* ATCC 19112, *Aspergillus parasiticus* NRRL 502 (compound 14=64 µg mL⁻¹), *Candida albicans* ATCC 10231 (compound 14=16 µg mL⁻¹), *Listeria monocytogenes* ATCC 19112, *Aspergillus parasiticus* NRRL 502 (compound 15=64 µg mL⁻¹ and 32 µg mL⁻¹, respectively). *Candida albicans* ATCC 10231, *Aspergillus ochraceus* NRRL 398, *Aspergillus flavus* NRRL 500 and *Aspergillus parasiticus* NRRL 502 (compound AgNO₃=64 µg mL⁻¹ and 16 µg mL⁻¹, respectively).

3.4. Effect of Ag(I)-NHC Compounds on Mycelium Growing

The effect of silver carbene complexes (compounds 13, 14, 15) in different concentrations on mycelium growing was given in Table 4. Compound 14 had appreciable effect on mycelium growing of *A. parasiticus* NRRL 502. As the compound concentration increased, mycelium growing decreased. When compound 14 was examined, while dry cell weight is 0.94 g100mL⁻¹ at the lowest concentration (8 µg.mL⁻¹), dry cell weight is low at the highest concentration applied in this study. Compounds (13, 14, 15) reduced *A. parasiticus* NRRL 502 mycelium growing by 12-36%. However, these compounds did not significantly affect the mycelium growing of other fungi (Table 4).

Table 4: Effects of silver carbene complexes ion in different concentrations on mycelium growing

<table>
<thead>
<tr>
<th>Ag-NHC</th>
<th>Mycelium weights of fungi</th>
<th>Wet Cell Weights (g100 mL⁻¹)</th>
<th>Dry Cell Weights (g100 mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspergillus parasiticus NRRL 502</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5.31 (±0.15)</td>
<td>3.23 (±0.14)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4.88 (±0.03)</td>
<td>5.01 (±0.04)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5.37 (±0.06)</td>
<td>5.59 (±0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspergillus ochraceus NRRL 398</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5.59 (±0.05)</td>
<td>5.71 (±0.06)</td>
</tr>
</tbody>
</table>
Silver (I)-N-heterocyclic carbene compounds were characterized and researched activity against some bacteria (Habib et al., 2020). The substances had remarkable effect against *Bacillus subtilis*, *Bacillus cereus* and *Macrococcus brunensis*. Boubakri et al. (2019) demonstrated that Ag(I)-N-heterocyclic carbene complexes had significant effect against *Staphylococcus aureus* ATCC 6538 and *Listeria monocytogenes* ATCC 19117. Gök et al. (2019) showed that naphthalen-1-ylmethyl substituted silver N-heterocyclic carbene complexes had high effect against *Pseudomonas aeruginosa*, *Escherichia coli*, *Staphylococcus aureus*, *Enterococcus faecalis*, *Candida albicans* and *Candida tropicalis*. Shahini et al. (2018) expressed that benzoxazole and dioxolane substituted benzimidazole-based N-heterocyclic carbene-silver(I) complexes had considerable effect against *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa* and *Candida albicans*. Ismaiel ve Tharwat (2014) examined effect of silver ions against mycotoxin producing *Aspergillus flavus* OC1 and obtained appreciable data.

4. CONCLUSION

In this research, we examined antimicrobial activity of silver (I) N-heterocyclic carbene complexes on biofilm forming bacteria or yeast and mycotoxin producing fungi. For this purpose, synthesis of NHC precursors was carried out. N-butyl imidazole and imidazole were purchased commercially and used without purification. The chemical structure of the compounds was revealed using 1H- and 13C-NMR spectroscopy. We found that the most effective substances were compounds 14, 15 and 13, respectively. Because these compounds damage the metabolism of Gram negative or positive bacteria and fungi, they inhibit biofilm formation and mycotoxin synthesis. The results obtained will contribute to the pharmaceutical industry as novel drug discovery.

Acknowledgments

We thank Dr. Bahadır TÖRUN for the support provided to us in the supply of mycotoxin-producing fungi and Fatma YAMAN for support in the activation of biofilm-forming microorganisms.

Author’s contributions

Esin Poyrazoğlu Çoban: Design of study, Testing microbial studies, Analysis and interpretation of results
Halil Bıyık: Supply of mycotoxin-producing fungi, Testing microbial studies, Analysis of results
Engin Ertugrul: Synthesis of silver (I) N-heterocyclic carbene complexes
Rukiye Fırıncı: Analysis of silver (I) N-heterocyclic carbene complexes, Analysis of data
Muhammet Emin Günay: Analysis of data

Conflict of interest
There is no conflict of interest in the content of this manuscript.

Funding
This study was funded by Scientific Research Projects Coordination Unit of Aydın Adnan Menderes University. (Project number: FEF–17026).

Data and materials availability:
All data associated with this study are present in the paper.

REFERENCES AND NOTES

Peer-review
External peer-review was done through double-blind method.

Article History
Received: 28 November 2020
Reviewed & Revised: 30/November/2020 to 10/January/2021
Accepted: 10 January 2021
Prepared: 13 January 2021
Published: January 2021

Publication License
This work is licensed under a Creative Commons Attribution 4.0 International License.

General Note
We recommended authors to print article as color digital version in recycled paper. Discovery Scientific Society will not provide any prints for subscription.