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ABSTRACT 

An increase in energy consumption is projected as a result of the world's unending 

population growth. As a result, many are likely to rely heavily on fossil fuels. Biogas 

is a viable choice because it is a green fuel and also sustainable. In this study, cow 

manure (CM) and food waste (FW) consisting of yam and plantain peels were 

collected, digested, and co-digested in the following proportions: 15%:85%, 25%:75%, 

and 35%:65%. Five (5) AD reactors of the same capacity (25 liters) were used to digest 

and co-digest CM and FW. The experiment was designed to discover the best 

proportion variation of CM to FW that will yield the greatest results. The results 

reveal that digestion of FW without seeding with CM takes a lengthy time to 

complete. In addition, co-digestion of FW with CM serving as a seeding agent took a 

shorter time. It was discovered that the percentage variation of co-digestion of CM 

(25%) to FW (75%), as opposed to the percentage variation of co-digestion of CM 

(15%) to FW (85%) and the percentage variation of co-digestion of CM (35%) to FW 

(65%), resulted in the highest biogas yield. 

 

Keywords: Cow Manure, Food Waste, Biogas Yield, Percentage Variation, Anerabic 
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1. INTRODUCTION 

The global energy demand is rising and the European Union (EU) has responded by 

setting striving goals for growing part of renewable energies and thus, reducing 

greenhouse gas (GHG) emissions. Biogas produced from the co-digestion of cow 

manure (CM) and food waste (FW) can make a significant contribution to realizing 

these goals. The world population has increased in the past decade and Nigeria the 

most populated country in sub-Saharan Africa countries is not exceptional. This has 

led to a demand for more energy consumption than ever before. Presently, energy 

generation from Nigeria is largely from fossil fuels which is not only scarce but has 
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contributed to more environmental pollution as a result of emission of GHGs. Besides, energy is a basic prerequisite and need for man's 

everyday life.  

The majority of countries particularly developing nations experience energy problems resulting from over-dependence on fossil 

fuels (Azam et al., 2021; Gürsan and De-Gooyert, 2021; Mohammad et al., 2021). Also, the energy drivers of all nations are energy 

security, environmental protection, and economic growth. It is projected that for the next 10 decades; fossil fuel sources will be 

exhausted (Moreau and Vuille, 2018). The continuous dependence on fossil fuels and environmental-related issues especially the 

emission of GHG and climate change has shift attention to environmentally friendly energy sources such as biogas (Kumar et al., 2018; 

Orhorhoro et al., 2022). Researchers have demonstrated that biogas is a potential renewable energy source for industrial as well as 

domestic applications and an effective solution to the global energy crisis (Orhorhoro et al., 2017; Achinas et al., 2017).  

The anaerobic digestion (AD) process involves the use of particular bacteria to biologically break down organic materials in the 

absence of oxygen Carlini, (2021), Mudzanani et al., (2022) and four categories of bacteria interact with each other for the production of 

biogas, which include hydrolytic, acidifying, acetogen, and methanogenic bacteria. However, the stages that make up the complete AD 

process include hydrolysis, whereby the hydrolytic bacteria attack the multipart organic matter (mainly consisting of proteins, 

carbohydrates, and lipids) and break it down into monomers and oligomers. The next phase is acidogenesis, a phase where the already-

produced soluble monomers are transformed into volatile fatty acids, alcohols, and ketones. 

In the acetogenesis phase, the acetogen bacteria react with the afresh generated compounds to produce acetic acids (CH3COOH), 

carbon dioxide (CO2), and hydrogen (H2). In the methanogenesis phase, methane (CH4) is produced through the uptake of acetic acid 

and hydrogen (Carlini, 2021). This process comprises two separate groups of bacteria: Hydrogenotrophic bacteria, which allow 

anaerobic oxidation of hydrogen, and acetoclastic bacteria, which permit anaerobic dismutation of acetic acid, resulting in the 

production of methane and carbon dioxide (Ebunilo et al., 2015; Pellera and Gidarakos, 2017; Barua et al., 2019; Nganyira et al., 2022). 

Wet digestion technology or dry digestion technology can be used for the AD processing of FW.  

Nevertheless, in contrast to wet digestion technology, which begins with FW either as a pumpable slurry primarily composed of 

water or as a pumpable combination, dry digestion is only practical for FW with a high fiber content. Wet AD technology can be 

utilized to treat FW using fixed-dome plants, floating-drum plants, polyethylene tube digesters, balloon digesters, etc. (Orhorhoro et al., 

2019). Biogas is a composition of gases that consists mainly of methane (40%–75%), carbon dioxide (25%–60%), remnants of nitrogen, 

hydrogen sulphide, and hydrogen (Čater et al., 2014; Bharathiraja et al., 2018; Kainthola et al., 2019). Eventually, all organic waste 

biologically decomposes to generate biogas through the AD process, leading to sustainable waste management.  

Biogas production is an important technology for attaining sustainable energy outputs without causing negative effects on the 

environment, especially when generated through AD and recovered efficiently (Fathya et al., 2014). This technology is capable of 

processing large quantities of organic waste (Ebunilo et al., 2016a; Ingabire et al., 2023). As a result of environmental concerns and 

policy measures, the focus is now on the use of FW and other biodegradable organic matter as renewable feedstock for electricity 

generation, and fuel production (Kumar et al., 2018; Moreau and Vuille, 2018). Anaerobic digestion and biogas fuel resources have been 

enhanced by growing organic waste generation, and global warming threats (Kumar et al., 2018). The main use of biogas is for 

electricity generation, thermal applications like cooking, heating, and lighting, and the production of biofuels.  

An estimated 7000 MW of electric power is generated from biogas production yearly (Pasternak, 2021). Food waste is usually that 

portion of meal discarded by homes and cafeterias. It is also a food matter discarded as a result of sales and distribution. It could also 

be peels and trimmings from the preparation of food activities in kitchens and restaurants (Ebunilo et al., 2015). It is also the edible part 

of plants and animals’ harvests for human consumption but not ultimately consumed. Dumping of untreated FW in dumpsites which is 

a common practice causes environmental problems (Ebunilo et al., 2016a; Frauke et al., 2017; Orhorhoro et al., 2019). Indiscriminate 

waste disposal causes serious environmental health problems and promotes insect vectors like mosquitoes and flies, rats and mice, 

flooding of streams, development of aquatic weeds, odor problems, nuisance, and so on (Nimas et al., 2017).  

Thus, there is a need to treat it and bring it back to the cycle of life to maintain ecological harmony. Another serious problem of FW 

is the generation of landfill leachate. Landfill leachate as reported by Orhorhoro and Oghoghorie, (2023) is a liquid that leaks from the 

landfill and enters the environment. Once it enters the environment, it becomes a risk for mixing groundwater near the site and beyond. 

However, FW has high energy content and it offers good potential as feedstock for power generation. Nevertheless, the adoption of 

biogas technology can reduce the emission of GHGs due to its application as a renewable resource (Sarkar et al., 2020; Kabeyi and 
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Oludolapo, 2020). For instance, 0.29% of overall energy usage in Switzerland for the year 2014 was in the form of biogas and it 

accounted for close to 8% of the overall renewable energy production (Abanades et al., 2022).  

Besides, biogas usage can reduce over dependence on solid biomass like firewood as cooking fuel. Based on estimation, biogas has 

the potential to provide clean cooking fuel for about 200 million people by the year 2040, predominantly in Africa and Asia. Thus, 

biogas has an important role in the actualization of the social development goals (SDGs) (Machado et al., 2021). With upgrades and 

proper purification, biogas produces biomethane as a superior fuel to unprocessed biogas (Moreau and Vuille, 2018). This makes biogas 

a dependable energy resource in the energy evolution to green and little carbon energy and electricity mix (Barragán-Escandón et al., 

2020; Krupin et al., 2020; Akbulut et al., 2021). Therefore, biogas has a vital role to play in the international energy evolution due to the 

demand to transform the global electricity systems from fossil fuel-based generation to minimum carbon and renewable energy-based 

power generation.  

With huge biodegradable organic waste feedstocks to biogas conversion potential, biogas will play an extremely important role in 

energy conversion as a renewable energy fuel resource and feedstock for industrial production of chemical fuels and renewable 

products (Prussi et al., 2019; Das et al., 2020; Ouahabi et al., 2021; Abanades et al., 2022). The use of a single substrate without co-

digestion in AD process is not encouraged due to nutritional imbalance and the absence of a variety of microbes (Kabeyi and 

Oludolapo, 2020; Orhorhoro, and Oghoghorie, 2024). Furthermore, single substrate digestion has some impediments arising from 

particles. For instance, waste from crops and agro-industrial are periodic feedstocks that lack nitrogen (N), just as cow dung has low 

organic loads with a higher concentration of N, which are potential inhibitors of the methanogenic stage (Mata-Alvarez et al., 2014; Xie 

et al., 2018).  

According to Harpreet et al., (2023), anaerobic co-digestion results in major variations in the quality of biogas generated. Similarly, 

Fu et al., (2022) reported that co-digestion of a feedstock of a CM and biowastes from rice husk or vegetable peelings led to an 

improved biogas yield. For optimization of biogas production, various pretreatment technologies have been applied and these 

techniques speed up the AD process (Paramagurua et al., 2017; Alvarez-Chavezet et al., 2019, Mudzanani et al., 2022; Orhorhoro and 

Oghoghorie, 2024). Pretreatment of feedstocks enhances the microbial activity of holocellulose thereby intensifying the hydrolysis stage 

which is the starting phase of the AD process (Čater et al., 2014).  

Subsequently, the improvement of biogas yield from FW may be enhanced through the addition of extra substrate (inoculum) into 

the digester that can equally serve as a seeding agent, thereby controlling their untapped biogas prospects Alvarez-Chavez et al., (2019) 

and this approach is called co-digestion (Szaja et al., 2020). The addition of an inoculum helps to improve process stability through 

enhancement of nutritional balance and neutralizing chemical inhibitors in the substrate (Alvarez-Chavez et al., 2019). 

 

2. MATERIALS AND METHODS 

The FW that consists of yam and plantain peels with C/N ratios of 36 and 31 Nimas et al., (2017) was collected from households in 

Okada town, Nigeria. For optimum biogas yields, adjusting the C/N ratio is desirable and this was achieved in this study by co-

digestion of CM (C/N ratio of 24) (Tanimu et al., 2014). The CM was collected from a cow farm located around an abattoir in Benin City, 

Nigeria. The collected FW was mechanically pretreated before charging into the AD reactors. The main purpose of the pretreatment is 

to enhance feedstock degradation and, thus, optimum biogas yield. The pretreatment process was started by cleaning and sorting the 

FW. All impurities, such as plastic and every other material that cannot be digested as they form solid deposits at the bottom of the 

digester, leading to a loss of digestion space, were removed.  

Thereafter, the FW is ground into fine particles to enhance easy and fast decomposition. The process of adding slurry-containing 

bacteria to freshly created slurry is known as biogas seeding. Without seeding, biogas production takes several days; however, with 

seeding, biogas production begins nearly instantly (Frauke et al., 2017). Thus, the use of CM acted as a seeding agent in this study. 

Besides, the experiment was subjected to an optimum mesophilic temperature range of 36⁰C-38⁰C as reported by Ebunilo et al., (2016b) 

and the pH reading was closely monitored. Five (5) different AD reactors of the same capacity (25 liters) were used to digest and co-

digest FW and CM. The experiment was carried out to determine the best percentage variation of CM to FW. The mass and 

composition of FW used were the same throughout the investigation. The experimental setup of the AD rectors is shown in (Figure 1). 

The anaerobic digestion reactor (ADR) arrangements are as follows: 

ADR1: Digestion of 20 kg of FW only 
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ADR2: Digestion of 20 kg of CM only 

ADR3: Co-digestion of 20 kg of feedstocks (15% CM and 85% FW) 

ADR4: Co-digestion of 20kg of feedstocks (25% CM and 75% FW) 

ADR5: Co-digestion of 20kg of feedstocks (35% CM and 65% FW). 

 

 
Figure 1 Experimental setup 

 

3. RESULTS AND DISCUSSION 

The results obtained from the different reactors are shown in (Figures 2–7). Figure 2 shows the results of the digestion of 20 kg of FW. 

Continua biogas generation was observed starting on the 5th day, and the optimum biogas yield (0.0372 m3) was obtained on the 34th 

day. It took 40 days for the complete anaerobic digestion of the feedstock, unlike ADR2, ADR3, ADR4, and ADR5. The prolonged 

process can be a result of the absence of CM, which may have served as a seeding agent for the other reactors. Seeding is so imperative 

that indecorous seeding or without seeding prolongs hydraulic retention time. Seeding shortens hydraulic retention time thereby 

improving biogas yield. An anaerobic digestion reactor seeded produced eleven times better than the one without seeding material 

(Frauke et al., 2017).  

Figure 3, which shows the results of the digestion of 20 kg of CM, revealed that biogas yield occurs earlier (i.e., on the 3rd day) and 

finishes on the 25th day. Thus, hydraulic retention time was completed as a result of the fast decomposition of cow manure feedstocks 

in the reactor, unlike ADR1, ADR3, ADR4, and ADR5. This is also an indication that cow dung can serve as a good seeding agent, 

especially for substrates that can hardly decompose. Besides, the optimum biogas yield of 0.0228 m3 was obtained on the 22nd day. The 

composition of the waste may be the cause of the poor biogas yield (CM). Similar to CM, which has low organic loads and a greater 

concentration of nitrogen (N) that may operate as possible inhibitors of the methanogenic stage, agricultural waste, and agro-industrial 

waste are often periodic feedstocks deficient in nitrogen (N) (Mata-Alvarez et al., 2017). 

Figure 4 shows the results of the graph of biogas yield against the number of days for co-digestion of feedstocks (15% CM and 85% 

FW). Biogas yield started on the 4th day and ended on the 34th day. The optimal biogas yield was obtained on the 33rd day, and the 

value is 0.045 m3. This value was higher than the co-digestion of 35% CM and 65% FW (ADR5), digestion of CM only (ADR2), and FW 

only (ADR1), but lower than the co-digestion of 25% CM and 75% FW (ADR4). Biogas yield began on the fourth day, similar to ADR3, 

and finished on the 35th day as shown in Figure 5, which is faster than ADR3 and ADR1 but slower than ADR2, which consists entirely 

of cow dung. The 25% CM in ADR4 allows the operation to be completed faster than the 15% CM in ADR3. Similarly, on the 30th day, 

the optimum biogas yield was attained, and the value was 0.0466 m3. 

This number exceeded ADR1, ADR2, ADR3, and ADR5. This conclusion can be linked to the C/N ratio, pH, and seeding agent 

because the experiment was carried out at the same optimal mesophilic temperature range. Biogas production is impacted by high or 

low C/N ratios (Tanimu et al., 2014). The overall C/N ratio after co-digestion must have reached the ideal range for maximum biogas 

yield (20–30 atoms of carbon for each atom of nitrogen) as a result of the low C/N ratio of CM and the moderate C/N ratio of FW. Each 

reactor's pH during the first week of digestion and co-digestion was in the acidic range (5.1–5.4 m), as was to be expected. However, 

after the first week, this pH range changed from an acidic medium to an alkaline medium (8.8–9.8 m). For every reactor, a neutral pH 

range of 6.8–7.04 m was found beginning on the fourteenth day. ADR4 revealed a better pH range during the reactor testing, which 

may support the best possible biogas generation. 
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Figure 2 Graph of biogas yield against number of days for digestion of food waste 

 

 
Figure 3 Graph of biogas yield against number of days for digestion of cow dung 

 

Consequently, an unstable methanogenesis phase may be the cause of the low biogas in the other reactors that were set up. The 

process of producing methane, known as methanogenesis, is extremely sensitive to acidity. Thus, to reduce the toxicity of both free 

ammonia and free volatile acids, a pH range that is favorable for methane-forming bacteria is needed (Paramagurua et al., 2017). Both 

high and low pH levels inhibit or cease methane-forming bacteria's activity. A pH of 6 signifies inhibition brought on by elevated VFA 

concentrations, and it also causes a notable rise in ammonia, which has potent inhibitory effects of its own. Naturally, the pH decreases 
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during the first few days due to acid production during fermentation of acidogenesis. After that, as a result of nitrogen digestion 

(which forms NH4+), pH steadily rises until stabilizes within neutrality as the biogas production process stabilizes (Paramagurua et al., 

2017). 

 

 
Figure 4 Graph of Biogas yield against number of days for co-digestion of feedstocks (15% of cow dung and 85% of food waste) 

 

 
Figure 5 Graph of Biogas yield against number of days for co-digestion of feedstocks (25% CM and 75% FW) 

 

Figure 6 depicts the results of the co-digestion of 20kg of feedstocks (35% CM and 65% FW; ADR5). Biogas yield began on the fourth 

day and concluded on the 33rd day, which is faster than ADR1, ADR3, and ADR4, but slower than ADR2, which only contains CM. The 
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speedier completion of the procedure in ADR5 is attributed to the 35% CM, as opposed to 15% in ADR3 and 25% in ADR4. Similarly, 

the best biogas yield was produced on the 29th day, with a value of 0.043 m3. This figure was more than ADRs 1 and 2, but less than 

ADRs 3 and 4. Figure 7 depicts the findings of a comparative investigation of all digested and co-digested feedstocks (ADR1, ADR2, 

ADR3, ADR4, and ADR5). 

 

 
Figure 6 Graph of Biogas yield against number of days for co-digestion of feedstocks (35% CM and 65% FW) 

 

 
Figure 7 Graph of biogas yield against number of days for all digested and co-digested feedstocks (i.e., ADR1, ADR2, ADR3, ADR4, 

and ADR5) 
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According to the analysis of the results, co-digestion of CM and FW feedstock resulted in an optimal increased biogas generation. 

However, the ADR4 fed with a feedstock combination of 25% CM and 75% FW produced the highest cumulative biogas yield as shown 

in Figure 8, which was consistent with the findings of (Fu et al., 2022). 

 

 
Figure 8 Comparative analysis of cumulative biogas yield. 

 

4. CONCLUSION 

The percentage variation of co-digestion of 25% CM to 75% FW, as opposed to the percentage variation of co-digestion of 15% CM to 

85% FW and the percentage variation of co-digestion of 35% CM to 65% FW, resulted in the highest biogas yield. Above and beyond, 

ADR4 had the highest cumulative biogas yield when compared to ADR1, ADR2, ADR3, and ADR5. This confirms that if CM is to be co-

digested with FW, the ratio should be 25% to 75%. Co-digestion will also be required to improve and accelerate the digestion process, 

resulting in a shorter hydraulic retention time. This study has shown that when FW is co-digested with CW, the process is finished in 

the quickest amount of time possible.  
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