The effect of acute exertional heat stress and heat acclimation on cardiovascular responses and stability in Human

Laxmi Prabha Singh¹,², Medha Kapoor¹,², Amir Chand Bajaj¹, Abhishek Bhardwaj¹, Rajender K Guta¹, Thiruthara P Baburaj¹, Shashi Bala Singh²,³

¹Heat Physiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Lucknow Road, New Delhi 110054, India
²Director and Scientist “G”, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Lucknow Road, New Delhi 110054, India

Correspondence to: Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Lucknow Road, New Delhi 110054, India; Email: heatphysiology@gmail.com

Publication History
Received: 14 April 2014
Accepted: 19 May 2014
Published: 28 May 2014

Citation

ABSTRACT

Heat acclimatization refers to the phenomena of adaptation to the external heat acquired through the natural and gradual exposure to elevated temperature. Heat acclimation, in principle, is quite similar to heat acclimatization, the major difference being that heat acclimation is attained in environmentally controlled simulation chambers. The current study investigates the effect of acute exertional heat stress on cardiovascular function in Human and the impact of heat acclimation in minimizing the cardiovascular strain imposed upon acute exertional heat stress. Six human volunteers participated in the study. They were subjected to acute exertional heat stress and heat acclimatized in Human Climatic Chamber simulated at 45°C and 30% RH. Cardiovascular stabilization was observed upon heat acclimation to the conditions of exertional heat stress as measured upon evaluation of Heart Rate Variability, Cardiac Output and stroke Volume.

Key Words: Heart Rate Variability, Cardiac Output, Stroke Volume, Core body temperature, Skin mean temperature, Human Climatic Chamber
1. INTRODUCTION

During military operations, the soldiers are often deployed to hot regions. This renders them predisposed to what are known as the heat related illnesses, which include conditions as mild as heat cramps to as severe as heat stroke. It is very important to acclimatize soldiers in advance to heat stress to reduce the risk of heat related illnesses. The process of acclimatizing individuals artificially in controlled climatic chambers is referred as acclimation. We have developed a heat acclimation schedule of eight-day duration. The current study investigates the effects of acute exertional heat stress on cardiovascular parameters and heat acclimation in conferring improved tolerance and adaptation to acute heat stress.

Heat acclimation refers to the phenomenon of adaptation to the external heat acquired through the natural and gradual exposure to elevated temperature. Heat acclimation, in principle, is quite similar to heat acclimatization, the major difference being that heat acclimation is attained in environmentally controlled simulation chambers (Dantzler, 1997; Magalhães et al. 2010; Nadel et al., 1974).

Heat acclimation is crucial for combating the morbidity and mortality associated with heat related illnesses. Although acclimatization for heat is crucial for the inhabitants of hot regions, it particularly of a greater relevance for certain occupational workers such as Military personnel, athletes, farmers, and commercial kitchen workers etc. as they undergo rigorous physical activity under the conditions of elevated temperature for extended durations (Carter et al., 2005; Jackson & Rosenberg, 2010; Mirabelli et al., 2010). Six healthy male participated in the study. They performed Sub-maximal exercise (Standardized step test) in HCC simulated at 45°C, 30% RH for 100 minutes/ day, eight days in a row to attain heat acclimation. Cardiovascular and thermoregulatory parameters were recorded at three occasions: before beginning of the exercise on day 1 (control), after exercise on the first day (acute exertional heat stress) and after exercise on the 8th day (post-acclimation).

Cardiovascular stabilization was observed upon heat acclimation to the conditions of exertional heat stress as measured upon evaluation of HRV, CO and SV.

2. MATERIAL AND METHODS

2.1. Participants

Six healthy male volunteered to complete this study [age 31.5 ± 1.2 years, height 165.8 ± 0.9 cm, body mass 73.7 ± 3.2 kg, body surface area 1.82 ± 0.1 meter square]. Inclusion criteria consisted of a medical history free of musculoskeletal, cardiac, endocrine, and heat-related illnesses. Prior to the study, all of the experimental procedure, including the risks involved, was explained to each participant. Written consent was then obtained. All protocols and procedures were approved by Institutional Human ethical committee.

2.2. Experimental design

We aim to assess the influence of heat acclimation in providing tolerance towards exertional heat stress on physiological and biochemical level. The standardized step test (sub maximal exercise) was performed by the participants at 45°C, 30% RH simulated in Human Climatic Chamber (HCC) for 100 minutes for eight days to attain heat acclimation. The exercise test was separated by 10 minutes rest period. All participants were instructed not to engage in any vigorous physical activity for at least 24 h prior to each experimental test, but were to follow a normal balanced diet throughout and also, to refrain from alcohol and smoking. All studies were conducted approximately at the same time of the day for each participant to avoid variations due to circadian influences.

2.3. Experimental procedure

Following arrival at the laboratory, the participants were made to rest for 60 min after which electrocardiography (esaote my lab 30 gold cardiovascular) was performed. After this, the core body temperature was measured using oral temperature with correction using YSI electrodes YSI electrodes from which the core body temperature was deduced. Skin mean temperature was calculated using Ramanathan equation. Initial nude body weight was measure upon evaluation of HRV, CO and SV.

Cardiovascular stabilization was observed upon heat acclimation to the conditions of exertional heat stress as measured upon evaluation of HRV, CO and SV.
Figure 1
Variation in Core Body Temperature (CBT), Skin Mean Temperature (SMT) and Mean Body Temperature (MBT) in control, acute heat stress (AHS) and Heat Acclimation

Figure 2
Degree of sweat loss and change in sweat rate post acute heat stress and acclimation
Figure 3
Stroke Volume Changes

Figure 4
Cardiac Output Changes
2.4. Statistical analysis
All variables were analysed using one way ANOVA. At least a 95% confidence level (p<0.05) was used as a threshold for statistical significance.

3. RESULTS
3.1. Body Weight
Pre exercise and post exercise weights were 73.89 ± 3.3 and 72.83 ± 3.2 kg respectively with a loss of 1.06 ± 0.2 kg body weight on day 1 and after acclimation i.e. pre and post exposure body weights were found to be 73.96 ± 3.1 and 72.43 ± 3.0 kg respectively with a loss of 1.53 ± 0.12 kg of body weight.

3.2. Body Temperature Responses
Core body temperature was measured using oral temperature with correction factor which was found to be 37.17 ± 0.08 and 38.39 ± 0.13, p<0.0001 in normal state and after acute heat stress whereas it was found to be 37.01 ± 0.09 and 38.13 ± 0.22, p<0.001, = 0.0008 in normal state and Post acclimation respectively. Mean skin temperature was calculated using Ramanathan formula (Ramanathan, 1964) using 4 point measurement i.e. \(0.3^* (T_{chest} + T_{biceps}) + 0.2^* (T_{calf} + T_{thigh}) \) which is found to be 33.98 ± 0.12, 36.77 ± 0.12, p<0.001 in normal state and after acute heat stress whereas it was found to be 33.98 ± 0.17 and 36.65 ± 0.29, p<0.001 in normal state and Post acclimation respectively. Mean body temperature is found to be 39.26 ± 0.08, 41.23 ± 0.13, p<0.001 in normal state and after acute heat stress whereas it was found to be 39.15 ± 0.10 and 41.00 ± 0.26, p<0.001 in normal state and Post acclimation respectively (Figure 1).

3.2. Sweat loss and Sweat rate analysis
Sweat loss (in kg) and sweat rate (in kg/hour/m² BSA) were found to increase with increase in duration of exercise. Sweat loss was measured using the formula: Sweat loss = [(nude body weight pre exercise - nude body weight after exercise) + volume of water consumed if any – volume of urine generated if any] – formula which was found to be 0.99 ± 0.16 kg and 1.53 ± 0.13 kg, p < 0.05 (0.03) post acute heat stress and post acclimation respectively (Figure 2).

Similarly, sweat rate was calculated and found to be 0.98 ± 0.15 kg and 1.53 ± 0.12 kg, p < 0.05 (0.018) post acute heat stress and post acclimation respectively.

3.3. Cardiovascular Responses
Heart rate increased post acute heat stress and post acclimation which was noted as 71.8 ± 4.4, 147.2 ± 9.5 and 141.0 ± 5.1, p < 0.001 in normal state, Post acute heat stress and Post acclimation respectively. Baseline stroke volume was found to increase in a graded manner from 1st day to 8th day of the protocol. A prominent difference was observed between the stroke volume recorded post exercise 8th day in reference baseline for the same as compared to that observed for baseline and post exercise values on the first day of the protocol (Figure 3).

Similar results were found for cardiac output. Significant increase in baseline cardiac output was observed. On day 1 and 8th, baseline reading for cardiac output was found to be 4.9 ± 0.15 and 6.9 ± 0.18, p <0.001 (Figure 4). Also, the difference in cardiac output pre and post exercise on the first day was more pronounced as compared to 8th day.

4. DISCUSSION
The current study investigates the effect of acute exertional heat stress on cardiovascular function in Human and the impact of heat acclimation in minimizing the cardiovascular strain imposed upon acute exertional heat stress. Six human volunteers participated in the study. The were subjected to acute exertional heat stress and heat acclimated in Human Climatic Chamber simulated at 45°C and 30% RH. Cardiovascular stabilization was observed upon heat acclimation to the conditions of exertional heat stress as measured upon evaluation of Heart Rate Variability, Cardiac Output and stroke Volume.

The sweat rate and sweat loss was found to increase upon heat acclimation as compared to unacclimated state, when the same magnitude and intensity of exercise was performed. Increased sweating increases body’s cooling efficiency. The increase in sweating results from an increase in the sensitivity of the sweat glands for thermal stimuli after acclamation which may result from an increase in receptor density stimuli of neural or hormonal nature and/or an increase in the size and number of the number of activated sweat glands (Nielsen, 1998).

Heat acclimation resulted in an increase in baseline CO in a graded fashion as the acclimation protocol progressed day by day with an increase in stroke volume and decrease in heart rate. The increase in SV observed upon heat acclimation is attributed to an increase in plasma volume expansion, which further results in an increased cardiac output. This reflects an increased cardiac efficiency manifested in increased skin vasodilatation ability. The plasma
volume expansion is the mainstay for increased cardiovascular effectiveness. The plasma volume expansion is brought about due to greater vascular protein retention. It compensates for an increase in heart rate and a decline in SV that occurs at the time of exercise in hot environmental conditions to maintain CO (Horowitz, 2003).

The cardiovascular system, which is responsible for heat dissipation from the skin, upon acclimation, increases the volume of circulating blood with skin vasodilatation/splanchnic vasoconstriction temperature threshold when subjected to heat stress (Senay et al., 1976).

ACKNOWLEDGMENTS
We would like to thank Dr. Pooja Chaudhary for her help and support. We would also like to thank Defence Institute of Physiology and Allied Sciences for facilitating our research work. We would like to extend sincere gratitude towards the Council of Scientific and Industrial Research (CSIR) for providing financial support.

REFERENCES

2. Dantzler W. Handbook of Physiology, Comparative Physiology, Bethesda, MD, 1997