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ABSTRACT
Knowing an integral point on the hyperbola ax? — (a +:|_)y2 = 3a —1 a process of generating sequence of integral points based on the known solution of the

hyperbola is illustrated. A few interesting properties among the solutions are presented.
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1. INTRODUCTION

The binary quadratic diophantine equation of the form y2 =Dx?+ N, Where D is a non-square positive integer has been studied by various

mathematicians for its non- trivial integral solutions where D takes different numerical values (Dickson, 1952, Mordell, 1969, Telng, 1996, Mollin, 1998). In this
context, one may also refer (Gopalan et al. 2001, 2007 a, b, c, 2008 a, b, ¢, d). However in (Gopalan, 2007d) it is shown that the hyperbola represented by

3x? + Xy =14 has only finite number of integral points. These results have motivated us to search for other choices of hyperbolas having infinitely many
non- zero integral solutions. It is towards this end, we search for infinitely many non - zero integral solutions on the hyperbola given by
ax? — (a -}-1)y2 =3a—1. In particular, knowing an integral point on the hyperbola ax? — (a+:|_)y2 =3a -1 a process of generating sequence of integral

points based on the known solution of the hyperbola is illustrated. A few interesting properties among the solutions are presented.

2. METHOD OF ANALYSIS

The binary quadratic equation representing the hyperbola is
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ax’ —(a+1)y° =3a-1 (1)
Introduction of the linear transformations

x=X+(@+)T @
y=X+aT

in (1) leads to
X?=a(@a+N)T?*-3a+1 ©)
whose initial solution is (X T,) =(a-11)

Employing the integral solutions of the Pell's equation
X?=a@+nT?+1 “4)

and applying the lemma of Brahmagupta, the non-zero distinct integral solutions of (1) are found to be

xn+1 =af+
[2a2+a1] g

24 a2 +a)

Yn+1 = (Za—lj [ a® J
f+ g
2 a’+a
wheren =-1,0,1.........

n+l n+1
f= [(2a+1)+2 a? +a} 4{(2&1+1)—2\/a2 +a}

9= [(2a+1)+2 a? +a}n+1—[(2a+1)—2 a? +a}

n+1

The recurrence relations satisfied by xn+1, yn+1 are correspondingly exhibited below:
Xpe3 — (48 +2)X,,, + X, =0, x, =2a, X, =4a’*+4a-2
Yies — (4a + 2)yn+2 tVYna = 0, Yo = 2a-1, Yi= 8a’ -1

2.1. Generation of solutions
Let (XO , yO) be any given integer solution of (1)

Asume that
X, = Xg + h} ©)
Y. = h- Yo

be the second solution of (1). Substituting (5) in (1) and simplifying we get,

h =2ax, +2y,(a+1) (6)

using (6) in (5) the integral solution of (1) are written in the matrix form as
x) = (2a+1 2(@+D)) (xg
1 2a  (2a+1)) \yo
The repetition of the above process leads to the general solution (Xn+1, Yn+1) of (1), represented by
[ij _ ( Xn (a+1)Yn] [XOJ
Yn+1 aYy Xn Yo
Where(X Y, ) satisfies (4)
A few interesting properties among the solutions are exhibited below:
1) (a2 + aXZ(Za —Dx,,, - 4ayn+1]2 is written as the difference of two square
2) [2a%x,, - (2a% +a-1)y, [ - (@* +a)[(2a—1)x,., - 2ay,., ] is a perfect square.
3) 4a°x,, , — (48 +2a-2)y, , +12a’x,,, —6(2a* +a-1)y,,, =0mod(3a-1)
4) (3a-1y {Z(Sa —1)[2a2x4w1 - (26\2 +a —1)y4n+4 ]+ 16%[2a2xn+1 - (Za2 +a —1)yn+1]2 }} is a biquadratic integer
5) Each of the following expressions is a Nasty number
i 6’ +afda-2)x,, —day, . +4(3a-1)*]
i 6{[4a2xn+1 ~(4a® +2a-2)y,, [ -4(3a —1)2}
i.  6(3a-1)4a’x,,,, — (42’ +2a-2)y,,, +2(3a_1)]
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v. 6(3a —1)[4azx2n+2 —(4a® +2a-2)y,,, - 2(3a_1)]

v 6(3a-14atx,,., —2(2a2 +a-1)y,,., +2(3a_1)]

Vi 6 {2[2;;12xn+l —(2a% +a-1)y,,[ +2(@* +a)[2a-1)x,, - 2ay,, [ +2(3a —1)2}
3. CONCLUSION

It is worth to mention here that, instead of (2), one may also consider the linear transformations as x = X —(a+1)T,y = X —aT and obtain a different

choice of integral solutions. To conclude, one may search for other forms of hyperbolas to obtain their infinitely many non-zero distinct integral solutions.
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