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ABSTRACT 
Knowing an integral point on the hyperbola 13)1( 22 −=+− ayaax  a process of generating sequence of integral points based on the known solution of the 

hyperbola is illustrated. A few interesting properties among the solutions are presented.  
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1. INTRODUCTION 
The binary quadratic diophantine equation of the form ,22 NDxy +=  Where D is a non-square positive integer has been studied by various 

mathematicians for its non- trivial integral solutions where D takes different numerical values (Dickson, 1952, Mordell, 1969, Telng, 1996, Mollin, 1998).  In this 

context, one may also refer (Gopalan et al. 2001, 2007 a, b, c., 2008 a, b, c, d). However in (Gopalan, 2007d) it is shown that the hyperbola represented by 

143 2 =+ xyx  has only finite number of integral points.  These results have motivated us to search for other choices of hyperbolas having infinitely many 

non- zero integral solutions. It is towards this end, we search for infinitely many non – zero integral solutions on the hyperbola given by

13)1( 22 −=+− ayaax .  In particular, knowing an integral point on the hyperbola 13)1( 22 −=+− ayaax   a process of generating sequence of integral 

points based on the known solution of the hyperbola is illustrated.  A few interesting properties among the solutions are presented.   

 

2. METHOD OF ANALYSIS 
The binary quadratic equation representing the hyperbola is  

 
                 

                RESEARCH                                                                                                                              4(10), April 1, 2013                        

DDDiiissscccooovvveeerrryyy   ISSN 
2278–5469        

EISSN 
2278–5450 

https://creativecommons.org/licenses/by/4.0/


                                                                                                                      

www.discoveryjournals.org     OPEN ACCESS 

 
 

ARTICLE 

P
ag

e2
3
 

RESEARCH 

13)1( 22 −=+− ayaax                                                        (1) 

Introduction of the linear transformations 
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in (1) leads to  

13)1( 22 +−+= aTaaX                                                      (3)                        

whose initial solution is )1,1()( 0,0 −= aTX  

 

Employing the integral solutions of the Pell’s equation  

 1)1( 22 ++= TaaX                                                                      (4) 

 

and applying the lemma of Brahmagupta, the non-zero distinct integral solutions of (1) are found to be  
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 The recurrence relations satisfied by xn+1, yn+1 are correspondingly exhibited below: 

             ,0)24( 123 =++− +++ nnn xxax    ,20 ax =         244 2

1 −+= aax  

             ,0)24( 123 =++− +++ nnn yyay     ,120 −= ay    18 2

1 −= ay  

 

2.1. Generation of solutions 

Let ),( 00 yx be any given integer solution of (1) 

Asume that 
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 be the second solution of (1).  Substituting (5) in (1) and simplifying we get,  

 

                 )1(22 00 ++= ayaxh                                                          (6)     

                              

using (6) in (5) the integral solution of (1) are written in the matrix form as  
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The repetition of the above process leads to the general solution ( )11, ++ nn yx  of (1), represented by 
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Where ( )nn YX ,  satisfies (4)  

 

A few interesting properties among the solutions are exhibited below: 

1) ( ) 211

2 4)12(2 ++ −−+ nn ayxaaa  is written as the difference of two square 
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5) Each of the following expressions is a Nasty number 
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3. CONCLUSION 
It is worth to mention here that, instead of (2), one may also consider the linear transformations as aTXyTaXx −=+−= ,)1(  and obtain a different 

choice of integral solutions.  To conclude, one may search for other forms of hyperbolas to obtain their infinitely many non-zero distinct integral solutions. 
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