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ABSTRACT 
 In particular, a great amount of effort has been expended on the simplest algebraic extensions of the rationales’ quadratic fields. These are intimately linked to 

binary quadratic forms and have proven to be a good testing ground for algebraic number theorists because, although computing with ideals and field 

elements is relatively easy, there are still many unsolved and difficult problems remaining. For example, it is not known whether there exist infinitely many real 

quadratic fields with class number one, and the best unconditional algorithm known for computing the class number has complexity Q(D1/2+€).Those 

properties are applied to the theory of the fundamental unit of 
1/2( )Q D The main result is as follows. Take some unit 1/2( ( ) )

2

a b D


 +
=  
 

whose norm = 1. If 

the number b satisfies a certain condition, then 2

0

r =  for some r where 0  is the fundamental unit of Q((D)l/2.  
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1. INRODUCTION 

Let 
1/2( ( ) )

2

t u D


+
=

be a unit of 1/2( )Q D   
with D square-free whose norm = 1. 

We investigate the properties of the factors of the number 
ru  which is 

defined by 1/2( ( ) )

2

r r rt u D


+
=

Those properties are applied to the theory of the 

fundamental unit of 1/2( )Q D  The main result is as follows. Take some unit 

' ' 1/2
' '( ( ) )

/
2

a b D
q p

 +
=  
 

 here 1  whose norm = 1. If the number b 

satisfies a certain condition, then 
2

0

r =  for some r, where 0  is the 

fundamental unit of 1/2( )Q D , (Ankeny et al. 1965; Degert, 1958: Hasse, 1965; 

Nagell, 1938; Redei, 1935; Richaud, 1866). 

 

Let D(>0) be a positive real integer and 1/2( )Q D  be the real quadratic field of 

discriminant D. Take the fundamental unit ε is commonly normalized so that 

|ε| > 1and some unit 1   of 1/2( )Q D  
 whose norm = 1. We denote this unit 

by 1/2( ( ) )

2

t u D


+
=

 and fix it in the following.  

We denote 
1/2( ( ) )

2

r r rt u D


+
=

, 1r                               (i) 

The aim of this paper is to investigate the properties of the number ru , and 

apply those properties to the theory of the fundamental unit of a real 

quadratic field.  

We use the following notation:  

Q-the field of rational numbers; 
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N -the set of positive rational integers; 

(a, b)- the greatest common divisor of a and b; 

a / b means a divides b. 

Sice the norm of   is 1 , from the identity  

    1 ( 1) ( 1) ( 2) ( 2)( )( ) ( ), , 3r r r r r r N r       − − − − − − − −− = + − − −    

We can deduce the relation  

              
1 2r r ru tu u− −= −  here 

1u u= and                    (ii) 

By virtue of the relations (ii), we can obtain 
ru , inductively and we may 

express ru , in the form  

( )r ru uP t=  where ( )rP t N                                       (iii)         

Here ( )rP t  satisfies the following inductive relations similar to (ii):  

1 2( ) ( ) ( )r r rP t tP t P t− −= −   3r                                    (iv) 

                  
1 21,P P t= =  

 

PROPOSITION 1:  

Those numbers ( )rP r N  have the following properties. 

1

2 2

1

1 1

(1) ( , ) 1 for any r N

(2) k,r N, k/r P / .

(3) k,r N,(k,r)=1 (P , ) 1

(4)  r N is odd and n=2 +1, N,then

     P

         =( )( )

r r

k r

k r

r

P P

P

P

If

P P

P P P P

+

+

+ +

= 

 

  =

 

= −

− +

 

 

Proof of (1)   

By virtue of the inductive relations (4),  

2 1 3 2 1(P , )=(P , )=......=( , ) 1r rP P P P+ =  

 This proves (1).  

 

Proof of (2) 

For two (positive) integers r and k, the properties of their greatest common 

divisor gcd and the least common multiple lcm come in pairs; the 

phenomenon is partly explained by the formula gcd(k,r) × lcm(k, r) = k × r. 

The basic fact that "P being a factor of Q" and "Q being a multiple of P" are 

equivalent also contributes to a certain kind of symmetry in properties of gcd 

and lcm. (Above, as below, the symbols k,r, P, Q stand for positive integers.) 

P|r and P|k ⇒ P|gcd(r, k), 

r|P and k|P ⇒ lcm(r, k)|P. 

Lemma 

For integers N1, ..., Nk, k ≥ 2, 

lcm(gcd(N1, k), gcd(N2,k), ..., gcd(Nr, k)) = gcd(lcm(N1, ..., Nr), k) 

gcd(lcm(N1, k), lcm(N2, k), ..., lcm(Nr,k)) = lcm(gcd(N1, ..., Nr), k).  

As with the union and intersection of the sets, gcd and lcm satisfy two 

distributive laws. 

Now we can express rt as ( )r rt S t= satisfies the following inductive 

relations. 
1 2r r rS tS S− −= −  

2

1 2 , 2S t S t= = −  

Take 
1/2( ( ) )

2

k k kt u D


+
= ,

1/2( ( ) ( ) ( ) )

2

k k kS t P t u D


+
=  for the unit   of 

equation (ii) 

Then the relation (iii) shows if k/r , then ( ) ( )r kP t P t= .
/ ( ( )) ( )r k k kP S t P t= . 

 

Proof of (3) 

For two numbers ,k r N  such that (k, r) = 1, there exist two numbers 

,a b N such that ku = rb + 1. Then from property (1), we have  

( , ) 1ka rbP P = , and from property (2),  

/  and P /k ka r raP P P  .  

So we can obtain assertion (3) immediately.  

Assertion (4) follows from the following identity: 

1 ( 1)

1 2 1 2

( ) ( )

( ) ( )

   

   

+ − + −

− −

− −
−

− −

1 2 1 ( 1) 1 2

1 2

( ) ( ) ( ) ( )

( )

       

 

− + − + − −

−

− − − − −
=

−

 

                                            
2 1 2( 1) 1

1 2

( )( )

( )

   

 

+ − + −

−

− −
=

−

 

                                            
2 1 2( 1)

1

( )

( )

 

 

+ − +

−

−
=

−        (1.1)

 

Since ( )N  =1 and 1  ,t satisfies the inequality 1/2( )t D we can assume 

that 3t   

 

PROPOSITION 2:   

For r N  then the following inequiality is satisfied  

          
1 ( 1)r rP t P+  −   

 

Proof:  

We prove it by induction. Since 
1 21 and PP t= =  

The assertion is trivial for r = 1. By virtue of the relations (1.1) and the 

inductive assumption for n - 1, we have  

            
1 1r r r r rP tP P tP P+ −= −  −  

                  
1 ( 1)r rP t P+  −  

Note: Relation (1.1) 
1 1r rtP P r+   =  

Result: (a) Both factor given in the property (4) of Proposition :(1) are larger 

than 1 

We can prove   r N is odd and n=2 +1, NIf    

                
2 2

1

1 1

 P

         =( )( ) 1

r P P

P P P P

+

+ +

= −

− +                                          

 

Result (b): For any l N ,then the following inequality holds. 

                       

1

1

( )
1 ( 1)

( )

(t+1)
                  <

( 2)

                 4

l l

l l

P P
t t

P P

t

+

+

+
 − 

−

−



 

If the discreminant D is given we may take 
1/2

1/2

D +1
 

2D −
 instead of 4. 

Now we merge the results of Proposition (1) and (2) we can get the following 

theorems. 

 

Theorem 1  

For the number of factors of Pr  then we can obtain the following estimates. 

       (A) 
2

      P  (k N)k   has at least m factors.  

       (B) If  is odd prime, then  P  (k N)kl
  has at least k + 1 factors.  

       (C) If r n is of the form 0 1

1 9r=2 ....
e e
l l  where 

0 0e  ie N ,1 i s 

where the il  are different odd     

               Primes, then  Pr , has at least 

                         
0 1 2 3 4 5 6 7 8 9s e e e e e e e e e e+ + + + + + + + + +  

factors. 

 

Proof:   

http://www.cut-the-knot.org/blue/chinese.shtml#lcm
http://www.cut-the-knot.org/Curriculum/Arithmetic/GcdLcm.shtml
http://www.cut-the-knot.org/do_you_know/mul_set.shtml
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By the virtue property (2) 1/k ka a
P P +  for a 2  , k N  and k<r 

implies Pk<Pr 

Since P2 =t>1,assertion (i) follows immediately and assertion (ii) follows fro 

result (a) of proposition (2). Then assertion (iii) is an easy consequence of 

property (3) 

Remark: since r ru uP= , the number of the factors of ru is the sum of 

that of u and of Pr . 

 

Let be any integer and let (also denoted ) be the 

least integer greater than 1 that divides , i.e., the number in the 

factorization  

 

with for . The least prime factor is implemented in Mathematica as 

FactorInteger[n][[1,1]].  

For , 3, ..., the first few are 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, ....  

If  is composite then , with equality for the square of a 

prime.  

A plot of the least prime factor function resembles a jagged terrain of 

mountains, which leads to the appellation of "twin peaks" to a pair of 

integers such that  

1. ,  

2. ,  

3. For all , implies .  

 

The least multiple prime factors for squareful integers are 2, 2, 3, 2, 2, 3, 2, 2, 

5, 3, 2, 2, 2,  

We have several applications to theory of the fundamental unit of a real 

quadratic fields as follows,  

 

A unit is an element in a ring that has a multiplicative inverse. If is an 

algebraic integer which divides very algebraic integer in the field, is called 

a unit in that field. A given field may contain infinity of units. The units of 

are the elements relatively prime to . The units in which are 

squares are called quadratic residues. All real quadratic fields 1/2( )Q D have 

the two units .  

 

The numbers of units in the imaginary quadratic field 1/2( )Q D− for 

, 2, ... are 4, 2, 6, 4, 2, 2, 2, 2, 4, 2, 2, 6, 2, ... (Sloane's A092205). There are four 

units for , 4, 9, 16, ... (Sloane's A000290; the square numbers), six 

units for , 12, 27, 48, ... (Sloane's A033428; three times the square 

numbers), and two units for all other imaginary quadratic fields, i.e., , 

5, 6, 7, 8, 10, 11, ... (Sloane's A092206). The following table gives the units for 

small . In this table, is a cube root of unity.  

 

Theorem 2 

Let 1/2( )Q D  be areal quadratic field of discriminate D>0,  and let 0 >1 be 

the fundamental unit of 1/2( )Q D . Take some unit  >1 of 1/2( )Q D  whose 

norm =1,and  express it in the form 
1/2( ( ) )

2

a b D


+
=

. 

If b=p where p is the prime number,  thenexcept for the case 

4
1/2(1 (5) )

2


 +
=  
 

 , we have 2 4

0 0 0 (or) ( )  or   =  ; and if 

2

0 0 (or)   = ,then 0   is of the form 1/2

0

( ( ) )

2

p D


 +
=  
 

, 

2D= p 4   .  

(II) If 
nb p= ” where p is an odd prime number and p > 4 and 2r 

,then
2

0 0 (or)   = ;and if 
2

0 0 (or)   = ,then 0    is of the 

form 
1/2

0

( ( ) )

2

rp D


 +
=  
 

, 2D= p 4r  . 

(III) If b p q=   where p and q are prime numbers such that 4p<q, then 

2 4

0 0 0 (or) ( )  or   = . 

(IV)If b=nq where q is the prime number such that 4n q ,then 

2

0  l = for some 0l = or l N . 

Proof:  

By virtue of (B) of theorem (1) and the two results of proposition (2) under 

condition in (I),(II),(III) or (IV) ,the unit  cannot power of odd degree of 

another unit of 
1/2( )Q D . (Since t>u-2 ,for unit 1/2( ( ) )

2

t u D+ (>1), under the 

condition in (IV),   cannot be a power of another unit 
'  which is of the 

form 
' ' 1/2

' ( ( ) )

2

a b D


 +
=  
 

where 
'/q p ). That is,  

2

0  l = for some l

=0 or l N . In each case of (I) to (IV), it is easy to check all possible l ’s 

and deduce the result. 

 

Remark 1 

If we are given the value of D, the condition (II), (III), (IV) may be improved by 

taking 
1 1

2 2(( ) 1) / (( ) 2)D D+ − instead of the number 4 in the inequalities. 
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