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ABSTRACT 

Some of biomagnetites are capable of functioning in bio-quantum computers as information storage, while most biomagnetites are 

somewhat cursory. Dynamics of biomagnetites in the presence of an external sinusoidal magnetic field is investigated. From the 

time-dependent Hamiltonian that describes the mechanics of biomagnetites, we derived an adiabatic invariant which is a useful tool 

for analyzing dynamical properties of the system. The time behavior of the Hamiltonian and the mechanical energy of the 

biomagnetite element is illustrated and addressed. 
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1. INTRODUCTION 
Organic molecules and free radicals in living organisms exhibit diverse magnetic characteristics primarily due to 
biomagnetites. Biomagnetites are nanometer-sized intracellular crystals composed of Fe3O4 and are usually found in 
single-domain units (magnetosomes) enveloped by a membrane in a cell. Unique characteristics of biomagnetites has 
opened potential applications in nano- and biotechnological science. Plenty of models and interpretations for the 
effects of weakly magnetized biomagnetites on living cells are proposed. They are quantum oscillator models, 
quantum interference between bound ions and electrons, magnetosensitive free-radicals, parametric resonance, 
coherent quantum excitations, eddy current effects, and cyclotron and/or stochastic resonance (Binhi, 1999; Bokkon 
and Salari, 2010). In particular, it is recently raised that the process of information storage in living systems might 
take place in biomagnetites rather than in DNA, meanwhile manifestation of the fixed information occurs at the level 
of DNA (Bokkon and Salari, 2010). For this reason, some of biomagnetites are expected to be capable of functioning 
in computers as information storage while most biomagnetites are somewhat cursory (Bokkon and Salari, 2010; Lang 
et al., 2007). Recently, the function of biomagnetites as an information storage has been a topic of active research 
(Banaclocha et al., 2010; Bokkon and Salari, 2010; Størmer et al., 2011). 

For understanding the mechanism of the action of biomagnetites, the development of their underlying mechanics 
may be necessary. Dynamics of information-storing biomagnetites that can be possibly applied in bio-quantum 
computing system will be investigated in this paper. The effects of external magnetic fields on biomagnetites will be 
analyzed using fundamental mechanics for describing the system, such as adiabatic invariant theory. By analyzing 
adiabatic properties of angular motion of the biomagnetite in the presence of a sinusoidal magnetic field,  the time 
behavior of the corresponding Hamiltonian and the mechanical energy of the biomagnetite element will be 
investigated.    
 
2. MECHANICAL DESCRIPTION OF BIOMAGNETITES     
If we exert low-frequency magnetic fields in a biomagnetite, a torque would be induced upon it. This may results in 
important consequences which act to rotate the whole cell via forces applied in the individual magnetosomes. 
Biological effects are generated through such rotation. 

Let the external magnetic field be a sinusoidal one which can be represented as 
 

(1) 
 

Under this field, a biomagnetite which have a magnetic moment    and a moment of inertia    suffers a torque. The 
oscillatory angular motion of the biomagnetite element due to such torque follows a linear equation of the form 
(Adair, 1994; Bokkon and Salari, 2010) 

 
(2) 

 
where                       and    are scalar coefficients,     is the angle between B(t) and         is the angle between the 
direction of the applied torque and the final acceleration,        is the effects of thermal agitation (thermal noise). The 
classical solution of Eq. (2) can be written as  
 

(3) 
 

where         is a complementary function and         is a particular solution (Thornton and Marion, 2004). The solution  
for the underdamped motion of biomagnetite is well known and it is given by 

 

(4) 
 

where        is a constant,                                        and      is an arbitrary phase. 
On the other hand, it is not always possible to derive the solution          We can derive it only for some particular 

cases. For example, for                        is given by 
 

(5) 
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where 

 
(6) 

 
This is a sinusoidal function which has a steady amplitude. Notice that the frequency of the oscillation of         is the 
same as the frequency of the driving magnetic field,    
  
3. ANALYSIS OF DYNAMICAL PROPERTIES 
Dynamical properties of the magnetite in the presence of B(t) will be investigated in this section. From Eq. (2), we can 
easily show that the Hamiltonian of the system is given by 

 
(7) 

 
where                      and          is a time function of the form 
 

(8) 
 

For conventional systems whose Hamiltonian is not a function of time, the mechanical energy can be derived 
from the Hamiltonian. However, for the case that the Hamiltonian is represented in terms of t such as the dissipative 
system, the mechanical energy is not always the same as the Hamiltonian (Marchiolli and Mizrahi, 1997; Yeon et al, 
1987). Because   in Eq. (7) plays the role of a dissipation term, the energy of the system is different from the 
Hamiltonian. For this system, the relation between the corresponding mechanical energy and the Hamiltonian is 
given by (Yeon et al, 1987) 

 

(9) 
 

It may be possible to know the complete classical solution     of the system for simple particular cases. For 
instance, as shown in the previous section, Eq. (3) with Eqs. (4) and (5) is the classical solution for the case               By 
inserting that solution and its time derivative into Eq. (7), we know the time behavior of the Hamiltonian and the 
corresponding mechanical energy. However, for general cases, we are unable to know such informations from the 
classical solution because        is unknown in that cases. Hence we should seek other method in order to find the time 
behavior of dynamical variables in a general case. Adiabatic invariant method is a useful tool for investigating the 
characteristics of general dynamical systems, including such time behaviors. However, this method is valid only when 
the parameters of the system vary sufficiently slowly. 

Now, we derive an adiabatic invariant by manipulating the Hamiltonian of the system. For such purpose, we 
express Eq. (7) into another form as 

 
(10) 

 
where 
 

(11) 
 

(12) 
 

(13) 

 
We suppose that the system undergos an adiabatic change for convenience, which corresponds to a slow 

variation of its parameters. Then, we can analyze the system using adiabatic invariants. In general, an adiabatic 
invariant J is constructed from 

 
(14) 
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This stays constant during the slow change of time functions given in Eq. (2). If we use Eqs. (12) and (13), the above 
equation becomes 
 

(15) 

 
Regarding a useful property of the adiabatic invariant, which is the conservation of its quantity during a time 

evolution of the system, we put 
 

(16) 
 

Then, by inserting Eq. (15) into Eq. (16), we confirm that the time evolution of the Hamiltonian is represented as 
 

(17) 
 
This is illustrated in Fig. 1 under the assumption, for convenience, that the thermal noise        is a high-frequency sine 
function of t, i.e., 
 

(18) 
 

for several numerical values of the amplitude       As you can see, the time variation of H(t) is somewhat complicated. 
There is microscopic fluctuation of the Hamiltonian, as well as macroscopic fluctuation. Such microscopic fluctuation 
appears in the form of a random change of the Hamiltonian in actual systems, which is originated from the thermal 
agitation. It is known that thermal agitation is a source of noise, where the understanding of the behavior of a noise-
driven system is a difficult problem in mathematical point of view (Johnson, 1927; McClintock, 1999). From the 
comparison of Fig. 1(b), which corresponds to high thermal agitation, with Fig. 1(a), we see that the amplitude of 
such change increases as thermal effects grow. By the way, by comparing the three lines in Fig. 1(a) [or 1(b)], we can 
conclude that the macroscopic fluctuation of the Hamiltonian grows as B(t) increases. 

Hence, by considering Eqs. (9) and (17), we can represent the time evolution of the mechanical energy as 

 
(19) 

 
Figure 2 is the illustration of the time evolution of this energy. Because the envelope of the graph for the oscillatory 
energy in this figure decreases with time, we can conclude that the mechanical energy dissipates. 

For a particular case where B(t)=0 and                 Eq. (19) reduces to 
 

(20) 
 

Thence, when the forces originated from the external magnetic field and the thermal noise are removed, the energy 
dissipates purely exponential way as expected. 
 
4. CONCLUSION 
The dynamical properties of angular motion of information-storing biomagnetites under external magnetic field B(t) 
have been investigated through the adiabatic invariant method. The time evolution of both the Hamiltonian and the 
mechanical energy was addressed through their illustrations. For the case of time-varying dissipative systems like 
this, the Hamiltonian and the mechanical energy are different from each other. The results, Eqs. (17) and (19), are 
approximated ones valid only for the cases where the parameters of the system undergo adiabatic changes. There 
are no known methods to find exact time behavior of such dynamical variables without exact knowledge of the 
classical solution         for general time-dependent Hamiltonian systems. 

Not only macroscopic but also microscopic oscillations (fluctuations) of both the Hamiltonian and the mechanical 
energy appeared in the graphs of Figs. 1 and 2, which are plotted under the assumption that thermal noise        is an 
high frequency sine function of t for convenience. The macroscopic oscillation is originated from the effects of B(t), 
while the microscopic oscillation from the effects of         As the scale of B(t) increases, the amplitude of macroscopic 
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oscillation for both H(t) and E(t) becomes high. The envelope of the macroscopic oscillation of the mechanical energy 
decreases with time according to the dissipation of the energy. Although the effects of thermal noise are appeared in 
the form of microscopic oscillation in H(t) and E(t) in our approximated analysis performed through the assumption 
given in Eq. (18), such effects may appear, in actual systems, in the form of random changes of H(t) and E(t). We see 
by comparing Fig. 1(a) with Fig. 1(b) that the random change of the Hamiltonian is large when the amplitude of )(t  

is high. Our mechanical analysis for angular motion of the biomagnetite element may contribute to understanding 
the dynamical properties of the information-storing biomagnetites. 
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Figure 1 
Time evolution of the Hamiltonian given in Eq. (17) for                               where               for (a) and                for (b). The value of      
is 1 for the solid red line, 2 for the long dashed green line, and 3 for the short dashed blue line. We have used                       
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Figure 2 
Time evolution of the mechanical energy given in Eq. (19) for                               where                The value of      is 1 for the solid red 
line, 2 for the long dashed green line, and 3 for the short dashed blue line. We have used                       
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