

www.discoveryjournals.org OPEN ACCESS

ARTICLE

P
ag

e2
9

REVIEW

Process modeling and related algorithms analysis about

soil collapse in channel construction

Feng An☼

Research Scientist, Beijing Aero-Space Control Device Department, P.R.China

☼Correspondence to: Feng An, 24th Building, 5th Li, Yv Hai Garden, North Cai Shi Road, Hai Dian District, Beijing, P.R.China, ZipCode

100143, E-Mail: fengan@iupui.edu

Publication History

Received: 19 December 2012

Accepted: 25 January 2013

Published: 1 February 2013

Citation

Feng An. Process modeling and related algorithms analysis about soil collapse in channel construction. Discovery, 2013, 3(8), 29-31

Publication License

 © The Author(s) 2013. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

 General Note

 Article is recommended to print as color digital version in recycled paper.

ABSTRACT
In contemporary world, Channel Construction & Mineral Mining have put channel formation analysis into a very important point, The Software Dynaform can

format many kinds of channels. The Author proposes a different kind of Dynaform implementation in which the whole system can be realized in a single

dynaform project. And the desired work will be first donated to OPENGL to do mathematical modeling using Finite Element Analysis with 50,000 points in

every single square inch. Later the system can be returned back to OPENGL where several types of deformation models can be applied specifically. Each will be

sent back to OPENGL to do the additional math modeling. Finally, a maple software was written to calculate the deformation degree and estimates how to

consolidate the whole tunnel channel. The modified structure was later verified using OPENGL in order to show the effectiveness of the method.

Keywords: C#, Cave-type Modeling.

Abbreviation: FEA - Finite Element Analysis

1. INTRODUCTION
Nowadays, subways' and underground channels' construction takes up a very large proportion in Industrial Engineering Projects. The Author proposes a

improved analysis about tons of soil and rocks collision when performing channel construction. In this research paper, FEA (Finite Element Analysis) is applied

in this topic. When performing Soil-Layer and Rock-Layer Analysis, the key importance is in deciding how to do the simulation and how to decide the FEA

methods' parameters. Basics about FEA methods are listed:

1. Finite Elements must be uncontinuous, thus there must be values that are odd enough, however, since there must have gaps in between to sample values,

the finite elements cannot be 100% representing the true values of the whole system design. That is to say, if the system characteristics are linear and

foreseeable in this Results value range, the discrete analysis method must be OK. However, if the system is non-linear in the input X-Axis value range, the

system's output cannot be identified in value, thus abrupt values can occasionally show up. This is highly dangerous when performing a construction, in

order to figure those values out and try to fix the whole project draft. Performing a finite element analysis combined with a throughput band-pass field

 REVIEW 3(8), February 1, 2013

DDDiiissscccooovvveeerrryyy ISSN
2278–5469

EISSN
2278–5450

https://creativecommons.org/licenses/by/4.0/

www.discoveryjournals.org OPEN ACCESS

ARTICLE

P
ag

e3
0

REVIEW

prevention design is enough.

2. Considering the 1)'s understanding, the system must be constructed into a linear model when applying the X-Axis values into the Design Patterns, a band-

pass and high-ban filter will be applied too. Considering the Dynaform Software, the tools do not possess filtering functionaries, thus, the author has found

some other ways to do this problem.

3. Typical Design Patterns allow not only IDE-type software, such as Solidworks, Dynaform etc. to take up the majority of the whole system simulation, but

those patterns also allow pre- or post- C compilers' modeling. Since C compilers can only simulate software models, C# is implemented to handle the

problem.

2. MULTI-LAYERS ANALYSIS AND SOIL FORMATION ANALYSIS
The Design Patterns do not allow different types of soil (Multi-layers Concept) to be completely mixed when conducting the experimenting, so different types

of soil may have totally different check-out data class and may results in different attitudes towards them. Thus, the compiler needs some additional

information to input and at the same time can help to take scrutimize at the input FEA data. The Compiler is designed according to computational intelligence

algorithms. The key ideas of it are as follows:

1. Computational Intelligence is a little different from Machine Learning, the key differences is that computational intelligence is based on history-back and

the history is a certain given period of time back, so the algorithm constantly changes the history it references. So the results can change unexpectedly

and can usually fit the real experimental environment.

2. The Compiler can be designed using the following way: A typical C to Assembly Correlation Algorithm for this types of implementation is C-Leyapu-

Assembly Algorithm. This can be built up according to modern control theories.

The C language can build up the input/output ports of the software model. For each ports, according to Leyapu theory in Complex System Design, it must

do not have poles and axis bypass in order to prevent dead-lock status to happen. Thus, the ports should be bi-directional. However, according to Complex

Lumped System Design in Control theory, the system should be linear and unbounded at the same time. So that the C language model should help to

maintain this by implementing a C# block, in which the C# coding should have zero threading and zero tasking, just waiting for the Input Sequence and

Output Sequence to come in and out.

/**/

//Create a Sample Model for the Software Ports to Connect with the C

language protocol

FOR i = 0; i ++; i -- ; i ## % maintain the i value of the ports

 port A ## %NEED ADDITION PROGRAMMING: port A <= 100

 port B ## %NEED ADDITION PROGRAMMING: port B <= 100

 port C ## %NEED ADDITION PROGRAMMING: port C <= 100

 port D ## %NEED ADDITION PROGRAMMING: port D <= 100

 …...

END % this can help to have four samples PORT A, PORT B, PORT C, PORT D.

// to connect with the C language protocol and leave inner connection ports

with additional input parameters

FOR i = A; i –, i ++.?C# % try to connect and guarantee the C# ports are bi-

directional

 i ++.

FOR C ++.?A ++?C –.\C# % try to implement four sample ports in whole

 PORT A ## %NEED ADDITION PROGRAMMING: port A <= 100

 PORT B ## %NEED ADDITION PROGRAMMING: port B <= 100

 PORT C ## %NEED ADDITION PROGRAMMING: port C <= 100

 PORT D ## %NEED ADDITION PROGRAMMING: port D <= 100

END

// Implement the C# sample block for each Port

FOR C# PP?Go?C# %try to build up the C# block

 INPUT

 CASS % relevant to PORT A

 PARAMETERS ONE

 method 1.

 IMPLEMENTING C# MODULE SIX

 method 2.

 NULL

 CASS % relevant to PORT B

 PARAMETERS TWO

 method 3.

 NULL

 method 4.

 IMPLEMENTING C# MODULE FIVE

 CASS % relevant to PORT C

 PARAMETERS THREE

 method 5.

 NULL

 method 6.

 NULL

 CASS % relevant to PORT D

 PARAMETERS FOUR

 method 7.

 NULL

 method 8.

 IMPLEMENTING C# MODULE SIX

 END

 OUTPUT

 CASS % relevant to PORT D

 PARAMETERS FIVE

 method 9.

 NULL

 method 10.

 NULL

 CASS % relevant to PORT E

 PARAMETERS SIX

 method 11.

 NULL

 method 12.

 NULL

 CASS % relevant to PORT F

 PARAMETERS SEVEN

 method 13.

 NULL

 method 14.

 NULL

 END

 PARAMETER CODING

 ARS % FOR IMPUT

 method 15.

 CODING

FIVE

 method 16.

 CODING

SIX

 ARD % FOR OUAPUT

 method 17.

 METHOD

FIVE IMPLEMENTATION

 method 18.

 METHOD

SIX IMPLEMENTATION

 ARE % DUE CPUT

www.discoveryjournals.org OPEN ACCESS

ARTICLE

P
ag

e3
1

REVIEW

 method 19.

 METHOD

SIX SOFTWARE*

 method 20.

 NULL

 END

END

% IMPLEMENTATION OF METHOD FIVE AND SIX

METHOD FIVE

 SIX

 THREE & FOUR

 SEVEN

 EIGHT & RASPDAURE

 EIGHT

 DRASC & RSQRD

 FIVE

 ADSGH || RSQCR

 THREE

 null.

END

METHOD SIX

 FIVE

 METHOD FIVE & CCSEAQWFGHYUICA

 THREE

 METHOD FIVE || DWSETYUIFGHJBVCXSWQ

 QU

 null.

 ARE

 null.

 CMD

 WINDOWS XP SP3 || LINUX FEDORA CORE 2.258 &&

OPENBSD CCSRA

 QEMU

 VIRTUAL BOX 2.293

 GCC

 GCC || G++ || VIRTUALRFCASKD

 CONTINUE...

END

/**/

In order to provide direct correlation between two computer-coding systems

and link the higher level Computer Coding language to machine coding and

Windows Operating Systems, the system should then use another C#

program to do the job.

/**/

*CCS 6.0 presents

*WRITTEN BY Feng Anderson An. He has implemented a C# program to do

 *operating system's desktop show-up and server terminal show-

up functionaries

% Coding blocks: ONE

THE DESIGN BLOCKS PATTERNS

 ONE.

 C LANGUAGE COMPILER RRD

 TWO,THREE.

 C++ LANGUAGE COMPILER G++

 FOUR.

 INTEL ASSEMBLY RESOURCE DDK

 R?SKD

 RRS && CCS && DEV CPP || RRS

END

/**/

The Compiler design is not basically quite a good one since it do not have any VoIP technology in the source code, currently IPv6 protocols. This protocol is

used to do data transferring with our any loss in data quality while at the same time maintain the maximum amount of lossless data. The DCT & IDCT

algorithm and Bi-QUAD algorithm or even the 8-FFT BUTTFLY algorithm do not cater to this Internet Protocol Standards, however have the same types of

doings. The proposed compilers do not have any input and output data yet. On deciding which types of data transmission protocol is OK for this application.

The Author finally can decide which type of data is OK by performing a DSP Hardware Implementation Capability Survey. Since the DSP chip cannot implement

IPv6 series protocols on board because of its loss of hardware models correlated and merely sample data samples listed in the handbook of the Internet

Protocol Regulation, the Author chooses DCT and IDCT algorithms, and finally make the data transferring mechanism into a butterfly mechanism. This greatly

helps the FEA Ultra High Speed (8 core CPU full-speed, (2.8GHz)8 in total throughput and SPARC 2000 testing).

