

Discovery

A study of functors associated with fuzzy modules

Pravanjan Kumar Rana

Assistant Professor and Head, Dept. of Mathematics, Berhampore Girls' College; Berhampore, Murshidabad, West Bengal, India; Mail:-pkranabgc@gmail.com

Publication History

Received: 05 August 2014 Accepted: 12 September 2014 Published: 1 October 2014

Citation

Pravanjan Kumar Rana. A study of functors associated with fuzzy modules. Discovery, 2014, 24(84), 92-96

Publication License

© The Author(s) 2014. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

General Note

Article is recommended to print as color digital version in recycled paper.

ABSTRACT

In this paper first we construct a functor then we study this functor as well as we investigate this functor associated with fuzzy modules.

In this paper we show that:-

1.the R-modules and R-homomorphisms form a category, where R be a ring. This category is denoted by 'CM';

2.the fuzzy left R-module and fuzzy R-map form a category. This category is denoted by 'CF';

3. Ω : 'CM' → 'CF' is an covariant functor;

4.is also a homotopy type invariant functor.

Mathematics subject classification 2010: 03E72, 13C60, 18F05.

Key words and phrases: Fuzzy modules, function spaces, Category, Covariant functor

1. INTRODUCTION

The concept of fuzzy modules was introduced by Nogoita and Ralescu [1] and the category of fuzzy sets was introduced by Goguen[2] in 1967. In this paper we establish the function spaces associated with fuzzy modules.

To do this we recall the following definitions and statements.

Definition 1.1

Let R be a ring and M be left or right R-module. (M, λ) is called a **fuzzy left R-module** if there is a map $\lambda : M \to [0,1]$ satisfying the following conditions:

- i) $\lambda(a+b) \ge \min{\{\lambda(a), \lambda(b)\}, (\forall a,b \in M)\}}$
- ii) $\lambda(-a) = \lambda(a), \forall a \in M$
- iii) $\lambda(0) = 1$
- iv) $\lambda(ra) = \lambda(a) \ (\forall a \in M, r \in R)$

We write (M,λ) by λ_M

Definition 1.2

Let λ_M and η_N be arbitrary fuzzy left R-modules. A fuzzy R-map

 $\tilde{f}: \lambda_{M} \to \eta_{N}$ should satisfy the following conditions.

- i) $f: M \rightarrow N$ is an R-map,
- ii) $\eta(f(a)) \ge \lambda(a)$, $\forall a \in M$

Definition 1.3

Let $f:M\to N$ and μ be a fuzzy subset of N. The fuzzy subset $f^{-1}(\mu)$ of N defined as follows; for all $x\in M$, $f^{-1}(\mu)(x)=\mu(f(x))$ is called fuzzy preimage of μ under f.

Definition 1.4

A fuzzy submodules of M is a fuzzy subset of M such that

 $i)\mu(0) = 1$

ii) $\mu(rx) \ge \mu(x)$, $\forall r \in R$ and $\forall x \in M$

iii) $\mu(x+y) \ge \min(\mu(x), \mu(y)), \ \forall x, y \in M$

Definition 1.5

A fuzzy R-map $\widetilde{f} \in \operatorname{Hom}(\lambda_{\mathsf{M}},\eta_{\mathsf{P}})$ is called fuzzy split iff there exists some $\widetilde{g} \in \operatorname{Hom}(\eta_{\mathsf{P}},\lambda_{\mathsf{M}})$ such that $\widetilde{f}\widetilde{g} = \widetilde{I_{p}}$ and $\widetilde{g}\widetilde{f} = \widetilde{I_{\mathsf{M}}}$

Definition 1.6

A category C consists of

- (a) a class of objects X,Y,Z,...,denoted by Ob(C);
- (b) for each ordered pair of objects X,Y a set of morphisms with domain X and range

Y denoted by C(X,Y);

- (c) for each order triple of objects X,Y and Z and a pair of morphisms $f:X\to Y$ and
- $g: Y \rightarrow Z$ their composite is denoted by $gf: X \rightarrow Z$, satisfying the

following two axioms:

i) associativity: if $f \in C(X,Y)$ and $g \in C(Y,Z)$ and $h \in C(Z,W)$, then

 $h(qf) = (hq)f \in C(X,W)$

ii) identity: for each object Y in C there is a morphism $I_Y \in C(Y,Y)$ such that if $f \in C(X,Y)$ then $I_Y f = f$ and if $h \in C(Y,Z)$, then $h \mid_Y = h$.

Definition 1.7

Let C and D be categories. A covariant functor T from C to D consists of

- i) an object function which assigns to every object X of C an object T(X) of D; and
- ii) a morphism function which assigns to every morphism $f: X \rightarrow Y$ in C a morphism

 $T(f): T(X) \rightarrow T(Y)$ in D such that

 $a)T(I_X) = I_{T(X)}$

b)T(gf) = T(g).T(f), for $g: Y \rightarrow W$ in C.

Definition 1.8

A base point preserving continuous map $f: X \to Y$ is a homotopy equivalence if there is a base point preserving continuous map $g: Y \to X$ with $g \circ f \cong I_X$ and $f \circ g \cong I_Y$.

Lemma 1.9

Let $\text{Hom}(\lambda_M,\eta_N)$ denotes the set of all fuzzy R-maps from λ_M to η_N , then $\text{Hom}(\lambda_M,\eta_N)$ is an additive group. Moreover, if R is a commutative ring, then $\text{Hom}(\lambda_M,\eta_N)$ is a left R-modules.

Proof: Using [10], it follows.

Lemma 1.10

For a commutative ring R, R-modules M and N, Hom(M,N) is an R-module

Proof: Using [2], it follows.

Lemma 1.11

Let Hom(M,N) denotes the set of all fuzzy R-maps from R-modules M to R-modules N, then Hom(M,N) is an R –module, if R is a commutative ring

Proof

Using definition 1.1 and [7], it follows

Lemma 1.12

Given a fixed R-module M, the R-homomorphism f:N→P induces

- a) an R-homomorphism $f_*: Hom(M,N) \to Hom(M,P)$ defined by $f_*(\alpha) = f_*\alpha, \forall \alpha \in Hom(M,N)$
- b) an R-homomorphism f^* :Hom(P,M) \rightarrow Hom(N,M) defined by $f^*(\beta) = \beta \circ f, \forall \beta \in$ Hom(P,M)

Proof:

Using [6,7], it follows

Lemma1.13

Let M,N,P be R-modules and f:M \rightarrow N and g:N \rightarrow P be R-homomorphisms.

Then for any R- module A

- i) $(g \circ f)_* : Hom(A,M) \to Hom(A,P)$ is an R-homomorphism such that $(g \circ f)_* = g_* \circ f_*$;
- ii) $(g \circ f)^*$: Hom(P,A) \rightarrow Hom(M,A) is an R-homomorphism such that $(g \circ f)^* = f^* \circ g^*$;

Proof:

Using [6,7], it follows

2. CATEGORIES OF FUZZY MODULES

In this section we construct some categories associated with fuzzy modules.

Proposition 2.1

Let R be a ring and M be left or right R-module. Then **R-modules** and **R-homomrphisms** forms a category. This category is denoted by 'CM'

Proof:

We take all left R-modules of 'CM'' as the set of objects and the set of their R- homomorphisms, the set of morphisms Hom(M,N) and for every pair of objects (M,N) and (N,P), the compositions $Hom(M,N) \times Hom(N,P)$, denoted by

 $(f, g) = g \circ f$, where $f \in Hom(M,N)$ and $g \in Hom(N,P)$, satisfying the following axioms:

- a) for any object $M \in obj.'CM'$, there exists an identity morphism $I_M \in Hom(M,M)$;
- b) associativity of the composition holds.

Proposition 2.2

Let R be a ring and M be left or right R-module. Then **fuzzy left R-module** and **fuzzy R-map** forms a category. This category is denoted by **'CF'**

Proof

We take all elements of 'C**F**' as the set of objects and the set of their fuzzy R- maps, the set of morphisms $\operatorname{Hom}(\lambda_{M},\eta_{N})$ and for every pair of objects (λ_{M},η_{N}) and (λ_{N},η_{P}) , the compositions $\operatorname{Hom}(\lambda_{M},\eta_{N})\times\operatorname{Hom}(\lambda_{N},\eta_{P})$, denoted by $(\widetilde{f},\widetilde{g})=\widetilde{g.f}=\widetilde{g}$ o \widetilde{f} , where $\widetilde{f}\in\operatorname{Hom}(\lambda_{M},\eta_{N})$ and

 $\tilde{g} \in \text{Hom}(\lambda_{N}, \eta_{P})$, satisfying the following axioms:

- a) for any object $\lambda_{\rm M}\in{\rm obj.'CM'}$, there exists an identity morphism $\widetilde{I}_{M}\in{\rm Hom}(\lambda_{\rm M},\lambda_{\rm M})$
- b) associativity of the composition holds.

Proposition 2.3

Let M and N be arbitrary fuzzy left R-modules. A fuzzy R-map $f:M \rightarrow N$ is an fuzzy R-homomorphism, then for any fuzzy sub-module S of N, then

- i) $f(O_M) = O_N$ and f(-x) = -f(x), $\forall x \in M$; and
- ii) the set $f^{-1}(S) = \{x \in M: f(x) \in S\}$ is a fuzzy sub-module of M.

Proof:

i) Now $f(O_M) = f(O_M + O_M) = f(O_M) + f(O_M) \Rightarrow f(O_M) = O_N$.

Again $f(O_M) = f(x + (-x)) = f(x) + f(-x) = O_N \Rightarrow f(-x) = -f(x)$.

ii) Since $f(O_M) = O_N \in S \Rightarrow O_M \in f^{-1}(S) \Rightarrow f^{-1}(S) \neq \Phi$. Let $x,y \in f^{-1}(S) \Rightarrow f(x)$, $f(y) \in S \Rightarrow f(x)$

 $f(x-y) = f(x) - f(y) \in S$, since S lis a submodule of N $\Rightarrow x-y \in f^{-1}(S)$. Similarly, for $r \in R$ and $x \in f^{-1}(S)$, $rx \in f^{-1}(S) \Rightarrow f^{-1}(S)$ is a submodule of M. Since M is a fuzzy modules and hence by **definition 1.1 and 1.4**, it follows that $f^{-1}(S)$ is a submodule of M.

Proposition 2.4

Let **CF** denotes the category of fuzzy R-modules and fuzzy R-maps and **CM** denotes the category of R-modules and R-homomorphisms, then there exists a covariant functor

 λ : CM \rightarrow CF

Proof:

Define λ : **CM** \rightarrow **CF** by

 $\lambda(M)$ = (M,λ) = λ_M , which is the object of $\,\textbf{CF}$

Let M.N are two R-modules in **CM** and $f: M \rightarrow N$ be R-homomorphisms in **C**M, then

 $\lambda(f):\lambda(M)\to\lambda(N)$ in CF.

 $\lambda(f)(\alpha) = \alpha \cdot f^{-1}, \ \forall \ \alpha \ \text{in} \ \lambda(M)$

- i) α (a+b) $\geq \min\{\alpha(a), \alpha(b)\}, (\forall a,b \in M)$
- ii) α (-a) = α (a) , \forall a \in M
- iii) $\alpha(0) = 1$
- iv) α (ra) = α (a) (\forall a \in M, r \in R)

Let μ in N, then $f^{-1}(\mu)(x) = \mu(f(x)) \Rightarrow \alpha_1(f^{-1}(\mu))(x) = \alpha_1(\mu f(x)) = (\alpha_1 \mu)(f(x))$

$$\Rightarrow \alpha_2(f^{-1}(\mu))(x) = \alpha_2(\mu f(x)) = \alpha_2\mu(f(x))$$

Thus $\alpha_1 = \alpha_2 \Rightarrow \alpha_1 \cdot f^{-1} = \alpha_2 \cdot f^{-1} \Rightarrow \lambda(f)(\alpha_1) = \lambda(f)(\alpha_2)$

Let f:M \rightarrow N and g: N \rightarrow P are in CM, then λ (f): λ (M) \rightarrow λ (N),

 $\lambda(g): \lambda(N) \to \lambda(P)$ and gof: $M \to P$ are in **C**M.

Now $\lambda(g \circ f): \lambda(M) \rightarrow \lambda(P)$ by $\lambda(g.f)(\alpha) = \alpha(gf)^{-1} = \alpha(f^{-1}, g^{-1}) = (\alpha f^{-1}) g^{-1} = (\lambda(f)(\alpha)) g^{-1} = \lambda(f)(\alpha g^{-1}) = (\lambda(f) \lambda(g)) (\alpha)$ are in **CF**, also

 $\lambda(g) \ \lambda(f) : \lambda(M) \rightarrow \lambda(P) \text{ in } \mathbf{CF} \Rightarrow$

 $\lambda(q \circ f) = \lambda(q) \lambda(f)$.

Also $\lambda(I_M) = I_{\lambda(M)} \Rightarrow \lambda$: **CM** \rightarrow **CF** is a covariant functor

Proposition 2.5

Let R be a ring and M be a fixed R- module, then Hom_R(M,N) is a fuzzy R-module, for any R-module N.

Proof

Using Definition 1.1 and [7], it follows.

Proposition 2.6

Let R be a ring and M be a fixed R- module, **the** R-homomorphism f:N→P induces

- i) an fuzzy R-homomorphism f_* : $Hom_R(M,N) \rightarrow Hom_R(M,P)$ and
- ii) an fuzzy R-homomorphism f^* : Hom_R(P,M) \rightarrow Hom_R(N,M)

Proof: Using Definition 1.1 and Lemma 1.12, it follows.

Corollary 2.7

For any fixed R-module M, the fuzzy R module Hom_R(M,N) and their fuzzy R-homomorphisms forms category, for any R-module N; this category is denoted by 'CF'

Using Proposition 2.6 and Lemma 1.12(a), it follows

Proposition 2.8

'Hom_R' is a invariant functor in the sense that it is both a covariant and a contravariant functor

 $Hom_R: CM \rightarrow CM$ is an invariant functor, for any fixed R-module M.

Proof

Define $Hom_R : CM \rightarrow CF$ by

 $Hom_R(N) = Hom_R(M,N)$, for any fixed R-module M, which is the object of CF.

Let N,P are two R-modules in CM and $f:N \rightarrow P$ be R-homomorphisms in **C**M, then

 $Hom_R(f) = f_*: Hom_R(M,N) \rightarrow Hom_R(M,P)$ in CF and $f^*: Hom_R(P,M) \rightarrow Hom_R(N,M)$ are well defined mapping and so by Definition 1.1, Lemma1.12 and Theorems 2.6, the theorem follows.

Proposition 2.9

' Hom_{R} ' is a Homotopy type functor in the sense that if

f is a homotopy equivalence for any two R-modules M and N ,then $\mathsf{Hom}_R(f)$ is a isomorphism Proof:

Since f is a homotopy equivalence for any two R-modules M and N, there exists f:M \rightarrow N and

g: N \rightarrow M such that g.f \cong I_M and f. g \cong I_N, then Hom_R (f): Hom_R(P,M) \rightarrow Hom_R(P,N) and

 Hom_R (f): $Hom_R(N,P) \rightarrow Hom_R(M,P)$ are fuzzy R- homomorphisms, then Hom_R satisfies the following conditions:

- i) $\mathbf{f} \cong \mathbf{g} \Rightarrow \operatorname{Hom}_{R}(\mathbf{f}) = \operatorname{Hom}_{R}(\mathbf{g})$
- ii) $g.f \cong I_M \Rightarrow Hom_R(g f) = Hom_R(I_M) = Id. \Rightarrow Hom_R(g).Hom_R(f) = Id$
- iii) f. g $\cong I_N \Rightarrow Hom_R(f g) = Hom_R(I_N) = Id. \Rightarrow Hom_R(f).Hom_R(g) = Id$

Thus Hom_R(f) is isomorphic to Hom_R(g)

Corollary 2.10

Hom_R is also a Homotopy type invariant functor.

Proposition 2.11

All homotopy type invariant functors form a function spaces from category \mathbf{CM} to the category \mathbf{CF} , it is denoted by \mathbf{F}^{M} . Proof:

Using the Theorems 2.8, Theorem 2.9 and Theorem 2.10, it follows.

REFERENCE

- 1. C.V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to system Analysis (Birkhauser, Basel, 1975)
- 2. J. A. Goguen, Categories of V-sets, Bull. Amer. Math. Soc.75(1969) 622-624
- Massey W.S. Algebraic topology; an introduction, Springer Verlag, 1984
- 4. Munkers J.R. Topology a first course. Prentice Hall Inc, 1985
- Spanier H. Algebraic topology, Tata Mc-Graw-Hill Pub. Co. Ltd, 1966
- Adhikary, A. and Rana, P.K. (2001):- A study of functors associated with Topological groups, Studia Univ. "Babes-Bolyai," Mathematica, Vol XLVI, No 4, Dec, 2001
- 7. Adhikary M.R. Groups, Rings and Modules with Applications Universities Press, India, 1999
- 8. Rana P.K. A study of the group of covering transformation through functors, Bulletin Mathematique, 2009, 33(LIX), 21-24
- 9. Rana P.K. A study of functors associated with rings on continuous functions, JIAM, 2011, Vol. 33(1), 73-78

10. Fu-Zheng PAN, Fuzzy Finitely Generated Modules, Fuzzy sets and System. 21(1987), 105-113

