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ABSTRACT 

In this paper first we construct a functor then we study this functor as well as we investigate this functor associated with fuzzy 

modules.  

In this paper we show that:- 

1. the R-modules and R-homomorphisms form a category, where R be a ring. This category is denoted by ‘CM’; 

2. the fuzzy left R-module and fuzzy R-map form a category. This category is denoted by ‘CF’; 

3. : ‘CM’ → ‘CF’  is  an  covariant functor; 

4. is also a homotopy type invariant functor. 

 

Mathematics subject classification 2010: 03E72, 13C60, 18F05. 
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1. INTRODUCTION 

The concept of fuzzy modules was introduced by Nogoita and Ralescu [1] and the category of fuzzy sets was introduced by 

Goguen[2] in 1967. In this paper we establish the function spaces associated with fuzzy modules. 

 

To do this we recall the following definitions and statements. 
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Definition 1.1 

Let R be a ring and M be left or right R-module. (M,) is called a fuzzy left R-module if there is a map  : M → [0,1] satisfying the 

following conditions: 

i) (a+b)  min{(a), (b)},( a,b M ) 

ii) (-a) =(a) , aM 

iii) (0) = 1 

iv) (ra) = (a) ( a M, rR) 

We write (M,) by  M 

 

Definition 1.2 

Let M and N be arbitrary fuzzy left R-modules. A fuzzy R-map  

f
~

: M  →  N  should satisfy the following conditions. 

i) f : M→N is an R-map, 

ii) (f(a))  (a) ,   aM 

 

Definition 1.3 

Let f:M→N and  be a fuzzy subset of N . The fuzzy subset f-1() of N defined as follows; 

for all x  M, f-1()(x) = (f(x)) is called fuzzy  preimage of  under f. 

 

Definition 1.4 

A fuzzy submodules of M is a fuzzy subset of M such that 

i)(0) = 1 

ii)(rx)(x),  r R and x M 

iii)(x+y) min((x),(y)), x, y  M 

 

Definition 1.5 

A fuzzy R-map f
~
 Hom(M,P) is called fuzzy split iff there exists some g~  Hom(P,M) such that   

 , 

 

Definition 1.6 

A category C consists of 

(a)  a class of objects X,Y ,Z,....,denoted by Ob(C); 

(b)  for each ordered pair of objects X,Y a set of  morphisms with domain X and range 

Y denoted by C(X,Y); 

(c)  for each order triple of objects  X,Y and  Z and a pair of morphisms  f : X → Y and  

 g : Y→Z their composite is denoted by  g f : X→Z, satisfying the 

following two axioms: 

i) associativity : if  f  C(X,Y) and  g C(Y,Z)  and  h  C(Z,W),then 

h(gf) = (hg)f  C(X,W) 

ii) identity : for each object Y in C there is a morphism IY  C(Y,Y) such that if   f  C(X,Y) then  IY f = f  and  if  hC(Y,Z), then  h IY = h. 

 

Definition 1.7 

Let  C and  D be categories. A covariant  functor  T  from  C to D consists of 

i) an object function which assigns  to every object  X  of  C an object  T(X) of D; and 

ii) a morphism  function  which  assigns  to  every  morphism  f : X→Y  in  C a morphism  

T(f) : T(X) → T(Y)  in D such that 

a)T(IX) = IT(X) 

b)T(gf) = T(g).T(f), for  g : Y→ W in C. 

 

Definition 1.8 

A base point  preserving continuous map  f: X→Y  is a homotopy equivalence if there is  a base point preserving continuous map  

 g :Y→X  with  g  f    IX  and  f  g  IY. 

 

Lemma 1.9   

Let Hom(M,N) denotes the set of all fuzzy R-maps from M  to N , then Hom(M,N) is an additive group. Moreover, if R is a 

commutative ring, then Hom(M,N) is a left R-modules. 
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Proof: Using [10],it follows. 

 

Lemma 1.10  

For a commutative ring R, R-modules M and N, Hom(M,N) is an R-module 

 

Proof: Using [2], it follows. 

  

Lemma 1.11 

Let Hom(M,N) denotes the set of all fuzzy R-maps from R-modules M to R-modules N, then Hom(M,N) is an R –module, if R is a 

commutative ring 

 

Proof 

Using definition 1.1 and [7], it follows 

 

Lemma 1.12  

   Given a fixed R-module M, the R-homomorphism f:N→P induces 

a) an R-homomorphism f*:Hom(M,N)→Hom(M,P) defined by f*() = f,  Hom(M,N) 

b) an R-homomorphism f*
 :Hom(P,M) →Hom(N,M) defined by f*() = f,  Hom(P,M) 

Proof: 

Using [6,7], it follows 

 

Lemma1.13     

Let M,N,P be R-modules and f:M→N  and g:N→P be R-homomorphisms.  

Then for any R- module A 

i) ( g  f)* : Hom(A,M) →Hom(A,P) is an R-homomorphism such that 

( g  f)* = g*   f*; 

ii) ( g  f)*
 : Hom(P,A) →Hom(M,A) is an R-homomorphism such that 

( g  f)* = f*   g*; 

 

Proof: 

Using [6,7], it follows 

  

 

2. CATEGORIES OF FUZZY MODULES 

In this section we construct some categories associated with fuzzy modules. 

 

Proposition 2.1 

Let R be a ring and M be left or right R-module.  Then R-modules and R-homomrphisms forms a category. This category is 

denoted by ‘CM’ 

 

Proof: 

We take all left R-modules of  ‘CM’ as the set of objects and the set of their R- homomorphisms, the set of morphisms Hom(M,N) 

and for every pair of objects (M,N) and (N,P), the compositions Hom(M,N)Hom(N,P) , denoted by  

(f , g) = g  f , where f Hom(M,N) and g Hom(N,P),satisfying the following axioms: 

a) for any object M  obj.’CM’, there exists an identity morphism IMHom(M,M); 

b) associativity of the composition holds. 

 

Proposition 2.2
 

Let R be a ring and M be  left  or right R-module.  Then fuzzy left R-module and fuzzy R-map forms a category. This category is 

denoted by ‘CF’ 

 

Proof: 

We take all elements of  ‘CF’ as the set of objects and the set of their fuzzy R- maps, the set of  morphisms  Hom(M,N) and for 

every pair of objects (M,N) and (N,P) ,the compositions Hom(M,N) Hom(N,P),denoted by ( f
~

,  ) =    =  o ,   where 

 Hom(M,N) and 

   Hom(N,P), satisfying the following axioms: 
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a) for any object M  obj.’CM’, there exists an identity morphism MI
~

Hom(M,M) 

b) associativity of the composition holds. 

 

Proposition 2.3 

Let M and N be arbitrary fuzzy left R-modules. A fuzzy R-map f:M→N is an fuzzy R-homomorphism, then for any fuzzy sub-module S 

of N ,then 

i) f(OM) = ON and f(-x) = -f(x) , xM; and 

ii)  the set f-1(S) = {xM: f(x)S}is a fuzzy sub-module of M. 

 

Proof: 

i) Now f(OM) = f(OM + OM) = f(OM) + f(OM)  f(OM) = ON . 

Again f(OM) = f(x + (-x)) = f(x) + f(-x) = ON  f(-x) = -f(x). 

ii) Since f(OM) = ON S  OM  f-1(S) f-1(S)  . Let x,y  f-1(S)  f(x) ,f(y) S   

f(x-y) = f(x) – f(y) S, since S Iis a submodule of N  x-y  f-1(S). Similarly, for r R and xf-1(S) , rx  f-1(S)  f-1(S) is a 

submodule of M. Since M is a fuzzy modules and hence by definition 1.1 and 1.4, it follows that f-1(S) is a submodule of M. 

 

Proposition 2.4 

Let CF denotes the category of fuzzy R-modules and fuzzy R-maps and CM denotes the category of R-modules and R-

homomorphisms, then there exists a  covariant functor  

:  CM → CF 

 

Proof: 

Define :  CM → CF  by 

(M) = (M,) = M , which is the object of  CF 

Let M.N are two R-modules in  CM  and f : M→N be R-homomorphisms in  CM, then  

(f) : (M) → (N) in CF. 

(f)() = f-1,   in (M) 

i)  (a+b)  min{(a),  (b)},( a,b M ) 

ii)  (-a) = (a) , aM 

iii)  (0) = 1 

iv)  (ra) =  (a) ( a M, rR) 

Let  in N, then f-1()(x) = (f(x))  1( f-1())(x) = 1( f(x)) =(1)(f(x)) 

                                                                     2( f-1())(x) = 2( f(x)) =2(f(x)) 

Thus     1  =  2 1f-1 = 2f-1(f)(1)  = (f)(2) 

Let f:M→N and g: N→P  are in CM, then (f) : (M) → (N) , 

      (g) : (N) → (P) and gof : M → P  are in  CM. 

Now  ( g o f) : (M) → (P)  by (g.f) ()  =  (gf)-1  = (f-1. g-1)  = ( f-1 ) g-1 = ((f)()) g-1= (f)(g-1) =( (f)  (g)) () are in  CF , also  

(g) (f) : (M) → (P) in CF  

( g o f) = (g) (f). 

Also (IM) = I(M)  :  CM →  CF  is a covariant functor 

 

Proposition 2.5 

Let R be a ring and M be a fixed R- module, then HomR(M,N) is a fuzzy R-module, for any R-module N. 

 

Proof 

Using Definition 1.1 and [7], it follows. 

 

Proposition 2.6 

Let R be a ring and M be a fixed R- module, the R-homomorphism f:N→P induces 

i) an fuzzy R-homomorphism f* : HomR(M,N) →HomR(M,P) and  

ii) an fuzzy R-homomorphism f*
 : HomR(P,M) →HomR(N,M) 

 

Proof: Using Definition 1.1 and Lemma 1.12, it follows. 

 

Corollary 2.7 

For any fixed R-module M, the fuzzy R module HomR(M,N) and their fuzzy R-homomorphisms forms   category, for any R-module N; 

this category is denoted by ‘CF’ 
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Proof 

Using Proposition 2.6 and Lemma 1.12(a) , it follows 

 

Proposition 2.8 

‘HomR’ is a invariant functor in the sense that it is both a covariant and a contravariant functor 

HomR : CM→ CM is an invariant functor, for any fixed R-module M. 

Proof:  

Define HomR : CM→ CF  by 

HomR( N) = HomR(M,N), for any fixed R-module M, which is the object of  CF. 

Let N,P are two R-modules in  CM  and f:N→ P be R-homomorphisms in  CM, then  

HomR( f) = f* :  HomR(M,N) → HomR(M,P) in  CF and f*
 :  HomR(P,M) → HomR(N,M) are well defined mapping and so by Definition 1.1, 

Lemma1.12 and Theorems 2.6, the theorem follows. 

 

Proposition 2.9 

‘HomR’ is a Homotopy type functor in the sense that if
  

f  is a homotopy equivalence for any two R-modules M and N ,then HomR(f)  is a isomorphism 

Proof: 

Since f is a homotopy equivalence for any two R-modules M and N, there exists f:M →N and  

g: N →M such that  g.f  IM and  f. g  IN, then HomR (f): HomR(P,M) →HomR(P,N) and  

HomR (f): HomR(N,P) →HomR(M,P) are fuzzy R- homomorphisms, then HomR satisfies the following conditions: 

i) f  
  

g  HomR(f) = HomR(g) 

ii) g.f  IM  HomR(g f) = HomR(IM) =  Id. HomR(g).HomR(f) = Id 

iii) f. g  IN  HomR(f g) = HomR(IN) = Id. HomR(f).HomR(g) = Id 

Thus HomR(f) is isomorphic to HomR(g) 

 

Corollary 2.10 

HomR is also a Homotopy type invariant functor. 

 

Proposition 2.11 

All homotopy type invariant functors form a function spaces from category CM to the category CF, it is denoted by FM. 

Proof: 

Using the Theorems 2.8, Theorem 2.9 and Theorem 2.10, it follows. 
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