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ABSTRACT 
The homogeneous cubic equation with four unknowns represented by the diophantine equation (X3+Y3 = 14Z3 - 3W2(X+Y)) is analyzed for its patterns of non-

zero distinct integral solutions. A few interesting relations between the solutions and special numbers are exhibited. 
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Notations:  
m nt ,

 :  Polygonal number of rank n  with size m , npr
:  Pronic number of rank n , nJ

: Jacobsthal number of rank n , nj :   Jacobsthal - lucas 

number of rank n  , nky
:  Kynea number of rank n  
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1. INTRODUCTION 

The diophantine equations offer an unlimited field for research due to their variety (Dickson, 2005: Mordell, 1969; Carmichael, 1959). In particular, one may 

refer Gopalan et al. (2009, 2010a, 2010b, 2010c, 2010d, 2010e) for cubic equations with four unknowns. This communication concerns with yet another 

interesting equation (X3+Y3 = 14Z3 - 3W2(X+Y)) representing homogeneous cubic equation with four unknowns for determining its infinitely many non-zero 

integral points. Also, a few interesting relations among the solutions are presented. 

  

2. METHOD OF ANALYSIS 
    The diophantine equation representing a homogeneous cubic equation with four unknowns is 

   x y z w x y3 3 3 214 3 ( )+ = − +                         (1) 

To start with, it is observed that (1) is satisfied by the following integer quadruples x y z w( , , , )  

i.  a b ab ab a b ab a b2 2 2 2 2 2(2 2 ,2 2 ,2 ,2 ),+ + − − −  

ii. a b ab ab a b ab a b2 2 2 2 2 2(4 2 6 , 2 ,2 2 ,2 ),+ + − + + −  

iii. 
2 2 2 2 2 2(2 2 ,2 2 , , 2 )        + − − − − + +  

iv. 
2 2 2 2 2 2( 2 2 , 2 2 , , 2 )        − − − + − − − + −  

However, we have two more patterns of solutions for (1) which are illustrated below. 

 

2.1. Pattern - I   
Introducing the linear transformations 

x u v y u v z u, ,= + = − =                                                          (2)  

in (1), it leads to  

w v u2 2 22+ =                                                                           (3) 

Again, applying the linear transformations 

w p q v p q,= − = +                                                                    (4) 

in (3),it leads to the Pythagorean equation  p q u2 2 2+ =  

which is satisfied by 

 

p rs

q r s

u r s r s

2 2

2 2

2

9 , 0

=

= −

= +  

                                                      

Substituting the above values of p q u, ,  in (4) and (2), the corresponding non-zero distinct integral solutions of (1) are given by x x r s r rs2( , ) 2 2= = +  

y y r s s rs2( , ) 2 2= = −                                                     

z z r s r s2 2( , )= = +                                                         

w w r s s r rs2 2( , ) 2= = − +
 

 

2.2. Properties 
1. Each of the following is a nasty number. 

1. x r6 ( ,1) ,   if 
n nr 1 1 21

{[ 2 1] [ 2 1] }
4

+ += + + −   

2. z pq p q2 26[ (2 , )]−  

3. x pq p q y pq p q2 2 2 23[ (2 , ) (2 , )]− + −  

4. rx r z r t3,6[ ( ,1) ( ,1) 4 1]+ − −  

2. w r s z r s y r s( , ) ( , ) ( , )+ −  is written as the difference of two squares 

3. 
n n nx z 2(2 ,1) (2 ,1) 2(2 1)+ − +  is kynea number 

4. 
n n

nx y j2(2 ,1) (2 ,1)+ =  

5. rx r y r z r w r pr( ,1) ( ,1) ( ,1) ( ,1) 2 4+ + + − =  

6. 
n n n

nx y z j2(2 ,1) (2 ,1) (2 ,1)+ − =  

 

2.3. Pattern - II  
Assume                                                

u u a b a b2 2( , ) ( )= = + ,     a b, 0                                              (5) 

and write 2 as 
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( )
n

n

i i
2 1

2

(1 )(1 )
2

2

+
+ −

=                                                                   (6) 

Substituting (5) and (6) in (3) and employing the method of factorization, define 

n

n

a ib i
w iv

2 2 1( ) (1 )
( )

2

++ +
+ = ,                                                  (7) 

Equating real and imaginary parts in (7) we get,                                          

n n
w w n a b a b ab2 2 (2 1) (2 1)

( , , ) 2 ( )cos 2 sin
4 4

  + +   
= = − −    

    
 

n n
v v n a b ab a b2 2(2 1) (2 1)

( , , ) 2 2 cos ( )sin
4 4

  + +   
= = + −    

    
 

For simplicity and clear understanding, when 0=n , the corresponding solutions of (1) are given by 

x x a b a ab2( , ) 2 2= = +                                                    

y y a b b ab2( , ) 2 2= = −  

z z a b a b2 2( , )= = +  

w w a b a b ab2 2( , ) 2= = − −  

Note: It is worth to mention here that the above solution is same as in pattern I. 

 

2.4. Properties  
1. Each of the following is a nasty number. 

1 z pq p q2 26[ (2 , )]−  

2 x a a y a a z a a w a a6 ( , ) ( , ) ( , ) ( , )+ + +    

3 a ax a y a z a pr t3 10, 4,2[ ( ,1) ( ,1) ( ,1) 3 7 3]+ + − − − +  

2. 
n n n

nx y z j2(2 ,1) (2 ,1) (2 ,1) 3+ + =  

3. b bx b y b z b w b t pr3,(1, ) (1, ) (1, ) (1, ) 4 2 0(mod2)+ + − − −   

4. a az a w a pr t3,( ,1) ( ,1) 2 0(mod2)+ − −   

5. 
n n

nx y J2(2 ,1) (2 ,1) 6 4+ − =  
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