

Discovery

On the homogeneous cubic equation with four unknowns $(X^3+Y^3=14Z^3-3W^2(X+Y))$

Gopalan MA^{1*}, Vidhyalakshmi S², Sumathi G³

- 1. Professor, Dept. of Mathematics, Shrimati Indira Gandhi College, Trichy 2, Tamil Nadu, India
- 2. Professor, Dept. of Mathematics, Shrimati Indira Gandhi College, Trichy 2, Tamil Nadu, India
- 3.Lecturer, Dept. of Mathematics, Shrimati Indira Gandhi College, Trichy 2, Tamil Nadu, India

*Corresponding author: Professor, Dept.of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli, Tamil Nadu, India, E-Mail: mayilqopalan@gmail.com

Publication History

Received: 06 August 2012 Accepted: 21 September 2012 Published: 1 October 2012

Citation

Gopalan MA, Vidhyalakshmi S, Sumathi G. On the homogeneous cubic equation with four unknowns $(X^3+Y^3=14Z^3-3W^2(X+Y))$. Discovery, 2012, 2(4), 17-19

Publication License

© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

Article is recommended to print as color digital version in recycled paper.

ABSTRACT

The homogeneous cubic equation with four unknowns represented by the diophantine equation $(X^3 + Y^3 = 14Z^3 - 3W^2(X + Y))$ is analyzed for its patterns of nonzero distinct integral solutions. A few interesting relations between the solutions and special numbers are exhibited.

Keywords: Integral solutions, lattice points, homogeneous cubic equation with four unknowns. M.Sc 2000 mathematics subject classification: 11D25

Notations: $t_{m,n}$: Polygonal number of rank n with size m, pr_n : Pronic number of rank n, r_n : Jacobsthal number of rank n, r_n : number of rank n, ky_n : Kynea number of rank n

On the homogeneous cubic equation with four unknowns $(X^3 + Y^3 = 14Z^3 - 3W^2(X+Y))$, Discovery, 2012, 2(4), 17-19,

1. INTRODUCTION

The diophantine equations offer an unlimited field for research due to their variety (Dickson, 2005: Mordell, 1969; Carmichael, 1959). In particular, one may refer Gopalan et al. (2009, 2010a, 2010b, 2010c, 2010d, 2010e) for cubic equations with four unknowns. This communication concerns with yet another interesting equation $(X^3+Y^3=14Z^3-3W^2(X+Y))$ representing homogeneous cubic equation with four unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

2. METHOD OF ANALYSIS

The diophantine equation representing a homogeneous cubic equation with four unknowns is

$$x^3 + y^3 = 14z^3 - 3w^2(x+y) \tag{1}$$

To start with, it is observed that (1) is satisfied by the following integer quadruples (x, y, z, w)

i.
$$(2a^2 + b^2 + 2ab, 2ab - 2a^2 - b^2, 2ab, 2a^2 - b^2)$$

ii.
$$(4a^2 + 2b^2 + 6ab, -2ab, 2a^2 + b^2 + 2ab, 2a^2 - b^2)$$

iii.
$$(2\alpha^2 + 2\alpha\beta, 2\beta^2 - 2\alpha\beta, -\alpha^2 - \beta^2, -\alpha^2 + \beta^2 + 2\alpha\beta)$$

iv.
$$(-2\beta^2 - 2\alpha\beta, -2\alpha^2 + 2\alpha\beta, -\alpha^2 - \beta^2, -\alpha^2 + \beta^2 - 2\alpha\beta)$$

However, we have two more patterns of solutions for (1) which are illustrated below.

2.1. Pattern - I

Introducing the linear transformations

$$x = u + v, y = u - v, z = u$$
 (2)

in (1), it leads to

$$w^2 + v^2 = 2u^2 (3)$$

Again, applying the linear transformations

$$W = p - q, V = p + q$$

in (3), it leads to the Pythagorean equation $p^2 + q^2 = u^2$

which is satisfied by

$$p = 2rs$$

$$q = r^2 - s^2$$

$$u = 9r^2 + s^2, r > s > 0$$

Substituting the above values of p,q,u in (4) and (2), the corresponding non-zero distinct integral solutions of (1) are given by $x = x(r,s) = 2r^2 + 2rs$

(4)

$$y = y(r,s) = 2s^2 - 2rs$$

$$z = z(r,s) = r^2 + s^2$$

$$w = w(r,s) = s^2 - r^2 + 2rs$$

2.2. Properties

1. Each of the following is a nasty number.

1.
$$6x(r,1)$$
, if $r = +\frac{1}{4}\{[\sqrt{2}+1]^{n+1} \mp [\sqrt{2}-1]^{n+1}\}^2$

2.
$$6[z(2pq, p^2 - q^2)]$$

3.
$$3[x(2pq,p^2-q^2)+y(2pq,p^2-q^2)]$$

4.
$$6[x(r,1) + z(r,1) - 4t_{3,r} - 1]$$

- 2. w(r,s) + z(r,s) y(r,s) is written as the difference of two squares
- 3. $x(2^n, 1) + z(2^n, 1) 2(2^{2n} + 1)$ is kynea number

4.
$$x(2^n,1) + y(2^n,1) = j_{2n}$$

5.
$$x(r,1) + y(r,1) + z(r,1) + w(r,1) - 2pr_r = 4$$

6.
$$x(2^n,1) + y(2^n,1) - z(2^n,1) = j_{2n}$$

2.3. Pattern - II

Assume

$$u = u(a,b) = (a^2 + b^2)$$
, $a,b \neq 0$ (5)
and write 2 as

Gonalan et a

$$2 = \frac{\left((1+i)(1-i)\right)^{2n+1}}{2^{2n}} \tag{6}$$

Substituting (5) and (6) in (3) and employing the method of factorization, define

$$(w+iv) = \frac{(a+ib)^2(1+i)^{2n+1}}{2^n},$$
 (7)

Equating real and imaginary parts in (7) we get,

$$w = w(n,a,b) = \sqrt{2} \left[(a^2 - b^2) \cos \left(\frac{(2n+1)\pi}{4} \right) - 2ab \sin \left(\frac{(2n+1)\pi}{4} \right) \right]$$

$$v = v(n, a, b) = \sqrt{2} \left[2ab \cos \left(\frac{(2n+1)\pi}{4} \right) + (a^2 - b^2) \sin \left(\frac{(2n+1)\pi}{4} \right) \right]$$

For simplicity and clear understanding, when n=0, the corresponding solutions of (1) are given by

$$x = x(a,b) = 2a^2 + 2ab$$

$$y = y(a,b) = 2b^2 - 2ab$$

$$z = z(a,b) = a^2 + b^2$$

$$w = w(a,b) = a^2 - b^2 - 2ab$$

Note: It is worth to mention here that the above solution is same as in pattern I.

2.4. Properties

1. Each of the following is a nasty number.

1 6[
$$z(2pq, p^2 - q^2)$$
]

2
$$6[x(a,a) + y(a,a) + z(a,a) + w(a,a)]$$

3
$$2[x(a,1) + y(a,1) + z(a,1) - 3pr_3 - t_{10,a} - 7_{4,a} + 3]$$

2.
$$x(2^n,1) + y(2^n,1) + z(2^n,1) = 3j_{2n}$$

3.
$$x(1,b) + y(1,b) + z(1,b) - w(1,b) - 4t_{3,b} - 2pr_b \equiv 0 \pmod{2}$$

4.
$$z(a,1) + w(a,1) - pr_a - 2t_{3,a} \equiv 0 \pmod{2}$$

5.
$$x(2^n,1) + y(2^n,1) - 6J_{2n} = 4$$

REFERENCES

- Carmichael R.D. The Theory of numbers and Diophantine Analysis, Dover, New York, 1959
- Dickson I.E. History of the Theory of Numbers, Vol 2., Diophantine analysis, *Dover*, New York, 2005
- 3. Gopalan M A., Premalatha S, Integral Solutions of $(x+y)(xy+w^2)=2(k^2+1)z^3$ Bulletin of Pure and Applied Sciences, 29 E (No.2), 2009, 197-202
- 4. Gopalan MA., Pandichelvi V. Remakable solutions on the cubic equation with four unknowns $x^3 + y^3 + z^3 = 28(x + y + z)w^2$, Antarctica J. of Math, 2010, a 7(4), 393-401
- 5. Gopalan MA. Sivagami B., Integral Solutions of homogeneous cubic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, Impact.J.Sci.Tech. 2010, b 4(3), 53-60
- 6. Gopalan MA, Premalatha S. On the cubic Diophantine equation with four unknowns $(x-y)(xy-w^2)=2(n^2+2n)z^3$, International Journal of Mathematical Sciences. 2010, c 9(1-2),171-175
- 7. Gopalan MA, Kaliga Rani J, Integral solutions of $x^3 + y^3 + (x + y)xy = z^3 + w^3 + (z + w)zw$, Bulletin of Pure and Applied Sciences, 2010, d 29 E (No.1),169-173
- 8. Gopalan MA, Premalatha S, Integral solutions of $(x + y)(xy + w^2) = 2(k + 1)z^3$, The Global Journal of Applied Mathematics and Mathematical Sciences, 2010, e 3(1-2), 51 55
- 9. Mordell L. J Diophantine Equations, Academic Press, New York, 1969

