

Discovery

A unified study of inversion of an integral equation with the - function of two variables as its Kernel-II

Yashwant Singh^{1☼}, Laxmi Joshi²

- 1. Department of Mathematics, Government College, Kaladera, Jaipur (Rajasthan), India
- 2. Department of Computer Science, Shri Jagdish Prasad Jhabermal Tibrewal University, Chudela, Jhunjhunu, Rajasthan, India

Corresponding author: Yashwant Singh, Government College, Kaladera, Jaipur (Rajasthan), India, E-Mail: dryashu23@yahoo.in

Publication History

Received: 15 July 2012 Accepted: 20 August 2012 Published: 1 September 2012

Citation

Yashwant Singh, Laxmi Joshi. A unified study of inversion of an integral equation with the - function of two variables as its Kernel-II. Discovery, 2012, 1(3), 45-47

Publication License

© The Author(s) 2012. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0).

General Note

Article is recommended to print as color digital version in recycled paper.

ABSTRACT

The object of this paper is to solve an integral equation of convolution from having the I -function of two variables as its kernel. Some special cases are also given in the end.

Keywords: Laplace Transform; Lerch's Theorem, I -function. (2000 Mathematics Subject Classification: 33C99)

1. INTRODUCTION

1.1. Definition and Results

The Laplace Transform

$$F(p) = \int_{0}^{\infty} e^{-pt} f(t)dt, \operatorname{Re}(p) > 0$$
 (1)

Is represented by $F(p) = L\{f(t)\}$. Erdelyi (1954),

If
$$F(p) = L\{f(t)\}$$
 then

$$e^{-at}f(t) = F(p+a) \tag{2}$$

If
$$L\{f(t)\} = F(p), f(0) = f'(0) = \dots = f^{n-1}(0) = 0$$
 and

 $f^{n}(t)$ is continuous then

$$L\{f^n(t)\} = p^n F(p) \tag{3}$$

If f(t) is a continuous of t and $f(t) = L\{g(t)\}$, the integral

$$\int\limits_0^\infty e^{-pt}t^nf(t)dt$$
 converges, then

$$t^{n} f(t) = \left(-\frac{d}{dp}\right)^{n} g(p) \tag{4}$$

If
$$L\{f(t)\} = F(p)$$
 and $L\{g(t)\} = G(p)$, then

$$\int_{0}^{\infty} f(x)g(p+x)dx = F(t)G(t)$$
 (5)

The I-function introduced by Saxena (1982) represented and defined as follows:

$$I[Z] = I_{p_i,q_i:r}^{m,n}[Z] = I_{p_i,q_i:r}^{m,n} \left[z \left|_{(b_j,\beta_j)_{1,m},(b_{ji},\beta_{ji})_{m+1,q_i}}^{(a_j,\alpha_{ji})_{n+1,p_i}} \right| = \frac{1}{2\pi\omega} \int_{\mathcal{X}} \chi(\xi) d\xi \right]$$

where $\omega = \sqrt{-1}$

$$\chi(\xi) = \frac{\prod_{j=1}^{m} \Gamma(b_{j} - \beta_{j}\xi) \prod_{j=1}^{n} \Gamma(1 - a_{j} + \alpha_{j}\xi)}{\sum_{i=1}^{r} \left\{ \prod_{j=m+1}^{q_{i}} \Gamma(1 - b_{ji} - \beta_{ji}) \prod_{j=n+1}^{p_{i}} \Gamma(a_{ji}, \alpha_{ji}) \right\}}$$
(7)

 $p_i q_i (i = 1, ..., r), m, n$ are satisfying $0 \le n \le p_i$, $0 \le m \le q_i$, (i = 1,...,r), r is finite $\alpha_i, \beta_i, \alpha_{ii}, \beta_{ii}$ are real and a_i, b_i, a_{ii}, b_{ii} numbers such that

$$\alpha_j(b_h + v) \neq \beta_h(a_j - v - k)$$
 for $v, k = 01, 2, ...$

We shall use the following notations:

$$A^* = (a_j, \alpha_j)_{1,n}, (a_{ji}, \alpha_{ji})_{n+1,p_i}; B^* = (b_j, \beta_j)_{1,m}, (b_{ji}, \beta_{ji})_{m+1,q_i}$$

The I -function of two variables introduced by Prasad (1986) will be represented and defined as follows:

$$I[z_1,z_2] = I_{p_2,q_2:(p',q'):(p',q'')}^{0,n_2:(m',n'):(m'',n'')} \left[\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \middle| \begin{smallmatrix} (a_{2j}:\alpha'_{2j},\alpha''_{2j})_{1,p_2}:(a'_j,\alpha'_j)_{1,p'}:(a'_j,\alpha'_j)_{1,p'} \\ (b_{2j}:\beta'_{2j},\beta''_{2j})_{1,q_2}:(b'_j,\beta'_j)_{1,q}:(b'_j,\beta'_j)_{1,q'} \end{smallmatrix} \right]$$

$$= \frac{1}{(2\pi w)^2} \int_{L_1} \int_{L_2} \phi_1(s_1) \phi_2(s_2) \psi(s_1, s_2) z_1^{s_1} z_2^{s_2} ds_1 ds_2$$

$$w = \sqrt{-1}$$
(8)

Where

$$\phi_{i}(s_{i}) = \frac{\prod_{j=1}^{m^{(i)}} \Gamma\left(b_{j}^{(i)} - \beta_{j}^{(i)} s_{i}\right) \prod_{j=1}^{n^{(i)}} \Gamma\left(1 - a_{j}^{(i)} + \alpha_{j}^{(i)} s_{i}\right)}{\prod_{j=m^{(i)}+1}^{q^{(i)}} \Gamma\left(1 - b_{j}^{(i)} + \beta_{j}^{(i)} s_{i}\right) \prod_{j=n^{(i)}+1}^{p^{(i)}} \Gamma\left(a_{j}^{(i)} - \alpha_{j}^{(i)} s_{i}\right)} \quad \forall i \in \{1, 2\}$$

(9)

$$\psi(s_1, s_2) = \frac{\prod_{j=1}^{n_2} \Gamma\left(1 - a_{2j} + \sum_{i=1}^{2} a_{2j}^{(i)} s_i\right)}{\prod_{j=n_2+1}^{n_2} \Gamma\left(a_{2j} - \sum_{i=1}^{2} a_{2j}^{(i)} s_i\right) \prod_{j=1}^{q_2} \Gamma\left(1 - b_{2j} + \sum_{i=1}^{2} \beta_{2j}^{i} s_i\right)}$$

(10)

We will use the following result

$$\Gamma(v_1)(p+a)^{-1-h_1} \left[1 + z_1(p+a)p^{k_1} \right]^{-v_1} \Gamma(v_2)(p+a+b)^{-1-h_2} \left[1 + z_2(p+a+b)^{k_2} \right]^{-v_2}$$

$$=\sum_{r=0}^{\infty}\frac{b^r}{r!}e^{-(b+a)t}t^{r+h_1+h_2+1}I_{1,0;2,1:1,1}^{1,0;2,1:1,1}\left[\begin{smallmatrix}z_it^{-h_1}\\z_jt^{-k_2}\end{smallmatrix}\Big|_{(...(r+h_1+h_2+2,k_1,k_2),(1-\nu_1,k_1),(1+h_1,k_1),(1-\nu_2,1)}^{(r+h_1+h_2+2,k_1,k_2),(1-\nu_1,k_1),(1-\nu_1,k_1),(1-\nu_2,1)}\right]$$

(11)

Provided

$$\operatorname{Re}(1+h'_1+k_1v_1) > 0, \operatorname{Re}(1+h'_2+k_2v_2) > 0, |\operatorname{arg} z_1p^{k_1}| < \frac{\pi}{2}(2-k_1),$$

$$|\arg z_2 p^{k_2}| < \frac{\pi}{2} (2 - k_2), 2 > k_1 > 0, 2 > k_2 > 0, \operatorname{Re}(p + a) > 0, \operatorname{Re}(p + a + b) > 0$$

2. MAIN RESULT

Theorem: Each of the integral equations

$$G(p) = A \sum_{r=0}^{\infty} \frac{b^r}{r!} \int_{0}^{\infty} \left[(a-D)^{m_1} (a+b-D)^{m_2} F(p+x) \right] e^{-(a+b)x} x^{r+h_1+h_2+1}$$

$$\times I_{1,0:2,2:1,1}^{0,0:2,1:1,1} \left[\begin{smallmatrix} z_1 x^{-k_1} \\ z_2 x^{-k_2} \end{smallmatrix} \middle| \begin{smallmatrix} (r+h_1+h_2+2,k_1,k_2):(1-\nu_1,1),(1+h_1,k_1):(1-\nu_2,1) \\ ...:(r+h_1+1,k_1),(0,1),(0,1) \end{smallmatrix} \right] dx$$

And

$$F(p) = B \sum_{r=0}^{\infty} \frac{b^r}{r!} \int_{0}^{\infty} \left[(a-D)^{n_1} (a+b-D)^{n_2} G(p+x) \right] e^{-(a+b)x} x^{r+h_1'+h_2'+1}$$

$$\times I_{1,0;2,2;1,1}^{0,0;2,1;1,1} \left[\begin{smallmatrix} z_1 x^{-k_1} \\ z_2 x^{-k_2} \end{smallmatrix} \right|_{\dots;(r+h'_1+h'_2+2,k_1,k_2);(1-\nu_1,1),(1+h'_1,k_1);(1-\nu_2,1)}^{(r+h'_1+h'_2+2,k_1,k_2);(1-\nu_1,1),(1+h'_1,k_1);(1-\nu_2,1)} \right] dx$$

In the solution of the other, provided

$$m_1 + n_1 = h_1 + h'_1 + 2, m_2 + n_2 = h_2 + h'_2 + 2$$

$$AB\Gamma(v_1)\Gamma(v_2)\Gamma(-v_1)\Gamma(-v_2) = 1, \operatorname{Re}(p) > 0,$$

$$Re(1+h_1+k_1v_1) > 0, Re(1+h_2+k_2v_2) > 0,$$

Re(1+
$$h_1$$
+ k_1v_1) > 0, Re(1+ h_2 + k_2v_2) > 0,
Re(1+ h_1 - k_1v_1) > 0, Re(1+ h_2 - k_2v_2) > 0, arg $z_1p^{k_1}$ | $<\frac{\pi}{2}(2-k_1)$

$$|\arg z_2 p^{k_2}| < \frac{\pi}{2} (2 - k_2), 2 > k_1 > 0, 2 > k_2 > 0, \operatorname{Re}(p + a) > 0, \operatorname{Re}(p + a + b) > 0$$

 m_1, m_2, n_1 and n_2 are integers.

D represents differentiation with respect to (p + x).

2.1. Proof

Let
$$L{f(t)} = F(p)$$
 and $L{g(t)} = G(p)$

$$(a-D)^{m_1}(a+b+D)^{m_2}F(p) = (a+t)^{m_1}(a+b+t)^{m_2}f(t)$$
(14)

$$(a-D)^{n_1}(a+b+D)^{n_2}G(p) = (a+t)^{n_1}(a+b+t)^{n_2}g(t)$$
(15)

With the help of (5) and (11), the integral equation (12) gives

Similarly, the integral equation (13) gives

$$f(t) = B\Gamma(-v_1)(t+a)^{n_1-1-h_1}(t+a+b)^{n_2-1-h_2}g(t)\left[1+z_1(t+a)p^{k_1}\right]$$
$$\Gamma(-v_2)\left[1+z_2(t+a+b)^{k_2}\right]^{-v_2}$$

(17)

The equations (16) and (17) can be obtained from each other

$$AB\Gamma(v_1)\Gamma(v_2)\Gamma(-v_1)\Gamma(-v_2) = 1, \text{Re}(p) > 0, 2 > k_1 > 0, 2 > k_2 > 0$$

$$m_1 + n_1 = h_1 + h'_1 + 2$$
 and $m_2 + n_2 = h_2 + h'_2 + 2$

Hence by Lerch's theorem ((1962), p.5), it follows that each of the integral equations (12) and (13) is the solution of the other.

3. SPECIAL CASES

In the theorem put $k_2 = 1, k_1 = k, v_1 = v, z_1 = z$ and make $z_2 \rightarrow 0$ to get the following result involving I -function of one variable.

Each of the integral equations

$$G(p) = A \sum_{r=0}^{\infty} \frac{b^r}{r!} \int_{0}^{\infty} \left[(a-D)^{m_1} (a+b-D)^{m_2} F(p+x) \right] e^{-(a+b)x} x^{r+h_1+h_2+1}$$

$$\times I_{3,2}^{2,1} \left[z x^{-k} \left|_{\dots (r+h_1+h_2+2,k):(1-\nu,1),(1+h_1,k)}^{(r+h_1+h_2+2,k):(1-\nu,1),(1+h_1,k)} \right] dx \right]$$
 18)

$$F(p) = B \sum_{r=0}^{\infty} \frac{b^r}{r!} \int_{0}^{\infty} \left[(a-D)^{n_1} (a+b-D)^{n_2} G(p+x) \right] e^{-(a+b)x} x^{r+h'_1+h'_2+1}$$

$$\times I_{3,2}^{2,1} \left[z x^{-k} \left|_{\dots (r+h'_1+h_2),(0,1)}^{(r+h'_1+h'_2+2,k);(1+\nu,1),(1+h'_1,k)} \right| \right] dx \tag{19}$$

In the solution of the other, provided the conditions of Theorem are satisfied with

$$AB\Gamma(v)\Gamma(-v) = 1$$
, and $2 > k > 0$

$$h_1 = \alpha, h'_1 = \beta, h_2 = h'_2 = -1, m_1 = m, n_1 = n, m_2 = n_2 = 0$$

and $b \to 0$, (18) and (19) reduces to:

Each of the integral equations

$$F(p) = B \int_{0}^{t} \left[(a - D)^{n} G(p + x) \right] e^{-ax} x^{\beta}$$

$$\times I_{2,1}^{1,1} \left[zx^{-k} \left|_{(0,1)}^{(1+\beta,k):(1+\nu,1)} \right| \right] dx$$
(21)

is the solution of the other, provided

m and *n* are integers, $m+n=2+\alpha+\beta$

$$f(0) = f'(0) = \dots = f^{m-1}(0) = 0$$
, and $f^{m}(t)$ is

continuous when m > 0

$$g(0) = g'(0) = ... = g^{n-1}(0) = 0$$
, and $g^{n}(t)$ is continuous when $n > 0$

$$Re(1+\alpha+kv) > 0, 2 > k > 0, Re(1+\beta-kv) > 0.$$

REFERENCES

- 1. Erdelyi A. Tables of integral transforms, Mc-Graw Hill, New York, 1954, 1, 129-131
- 2. Prasad YN. On a multivariable I -function. Vijnana Parishad Anusandhan Patrika, 1986, 29(4), 231-235
- 3. Saxena VP. Formal solutions of certain new pair of dual integral equations involving H -functions, Proc. Nat. Acad. India Sect. 1982, A52, 366-375

