Water - Energy - Food Nexus Governance Adaptation to Climate Change

Publication History
Received: 26 November 2016
Accepted: 31 December 2016
Published: January-March 2017

Citation
Water – Energy – Food Nexus
Governance
Adaptation to Climate Change

Devi Prasad Juvvadi
Director (AMRG)

14 - 16 October, 2016 at
International Conference on
“Food-Water-Energy Nexus in Arena of Climate Change”
Anand Agricultural University, Anand, Gujarat
In collaboration with
NCCSD, Ahmedabad, Gujarat
Agriculture in 20th century

- **Green Revolution of 1960s**
- Global food production increase 2.5 to 3 times
- Only 12% in cultivated area
- India - 50 million tons to 200 million tons
- Even after green revolution, 56% increase in food production
- Cereals - energy use i.e fertilisers and water use i.e irrigation

Aftermath of green revolution
- Depletion of natural resources
- Soil degradation
- Greenhouse gas intensive agriculture

Agriculture has reached plateau

As we entered, 21st Century Climate Change started impacting agriculture negatively
India’s Climate Change Vulnerability

- **Impacts of Climate Change**
 - Reduction of Agriculture Yields in Medium term (2010-2039): upto 4.5-9%
 - Fall in GDP growth in Medium Term: up to 1.5% per annum
 (Venkateswarlu et al, 2013)
 - Reduction of Agriculture Yield in Long Term (2040 and beyond): > 25% if no measure is taken. (ICAR, 2009)

- **India**: population- around 1.3 billion- soon to become most populous country - creating pressure on natural resources.

- **Vulnerable to Climate Change**

- **Impact on Food security**

- **Impact on poor and marginal farmers, especially women.**
Water, Energy and Food are inextricably linked
- Water is a major input for food production
- Energy is required to produce and distribute water and food; to pump ground water, to power tractors & agric machinery and also to process, transport food

- Food production is the largest user of water at the global level, responsible for 70–90% of consumptive blue water use
- Water for energy currently amounts to about 8% of global water withdrawals (45% in industrialized countries, e.g. in Europe).
- Food production and supply chain is responsible for around 30% of total global energy demand
These primary resources WEF represent global risks for agriculture in 21st century/climate change

The approach to WEF depends on perspective of policymakers

If W perspective is adapted - F & E are resources

From a F perspective, E & W are inputs

From E perspective, water and as well as bio resources are input

Some of the descriptive elements of WEF nexus include:

- All three areas have billion of people without access
- All have rapidly growing demand
- All have resource constraints
- All have different regional availability and variations in supply and demand
- All have strong inter-dependencies
- All operate in heavily regulated markets

For today’s discussion I look from Water perspective; one calorie food, one liter water

Water is essential for agriculture

One apple – 70 liters

1Kg Vegetables 200 liters

One slice of bread – 40 liters

50 gms beef steak-2025

Source: Adapted from Bazilian et al 2011
Management of WEF have traditionally examined by researchers and addressed by policy makers in isolation of one another.

Nexus approach recognizes interconnectedness of water, energy, and food across space and time. Its objectives are:

- Improve energy, water, and food security
- Address externality across sectors, and decision-making at the nexus
- Support transition to sustainability
- Multi sectoral/dimensional

The nexus approach is necessary because of projections and challenges.
WEF projections and challenges

- Food demand to surge by 70% by 2050
- Population growth (70 per cent) to reach 9.5 billion by 2050
- Increased per capita calorie intake (30 per cent).
- Global meat demand increase by 60 per cent by 2030.
- About 90% increase of food production from intensification.
- Availability of Arable land!!!
- By 2050, irrigated agriculture covering 16% cultivated land with 44% production.
- Greater competition for water from other sectors could reduce the water by 18%.
- Climate change impacts on agriculture
- Global energy demand is projected to increase by 80% by 2050.
- Energy and the food system, including land-use change, account for almost half of global greenhouse gas emissions.
- Overall, emissions will increase by 50% between 2012 and 2050.

Some 580 billion cubic meters of freshwater are withdrawn for energy production every year. This amount account for 15% of the world’s total water withdrawal, coming right after agriculture. By 2035, energy consumption will increase by 35%, which will consequentially increase water consumption in energy sector by 85% (US Energy Information Administration-EIA)
Key challenges of WEF nexus and Climate Change in India

- Increasing population and declining agricultural land
- Stagnating or declining food production
- Increasingly water- and energy-intensive food production in the face of water and energy scarcity

Principles of Climate Change adaptation

Climate change adaptation should be made more relevant to policy

- Adaptation entails measures that reduce poverty and vulnerability and enhance long-term resilience in a changing climate.
- Adaptation comprises actions that strengthen the adaptive capacities of the poor, including the management of the natural resources on which their livelihoods depend; manages risks; and uses resources in an efficient and sustainable manner to meet the needs of present and future generations.
- Adaptation in one sector or by one community does not undermine the resilience of others.
- Adaptation responses and mechanisms do not undermine long-term sustainability.
Water and Energy in India

• India characterized as a ‘high water risk’ region (World Resources Institute, 2016)
• 90% of total water withdrawal emanates from agriculture (FAO-, 2016)
• However, irrigated land in India as a proportion of total agricultural land is 36.3% (World Development Indicators 2016)
• Water use efficiency, varies between 35-40% for surface water and between 65 to 75% for groundwater (Ministry of Agriculture 2013)
• At current trends it is projected availability of water for agricultural use may be reduced by 21% by 2020 (Indian Agricultural Research Institute, 2016)
• Groundwater is an important source of irrigation, with pumps and tubewells increasingly using electricity to pump out water (Minor Irrigation Statistics Wing, 2014)
Governance of WEF Nexus
From Governance point of view, some focus areas for integrated solutions in WEFN.

Source: Aditi Mukherjee, 2012
Solution for Water-Energy-Food Nexus

Opportunities for improving water use efficiency in the energy sector

- Increasing the use of renewable energies
- Increasing resource productivity
- Developing multi-use reservoirs
- Reducing fresh water demand in energy production

Opportunities for increasing energy use efficiency in water production and delivery

- Shifting from fossil fuels to renewable energy
- Increasing the use of co-generation plants
- Desalinizing brackish water
- Using waste as a resource in multi-use systems
Key pathways to agriculture with WEF nexus

Employing sustainable production methods

Changing diets
1 kg weight increase; 7 kg for cattle; 4 kg for pork, 2 kg for chicken

Reducing losses & wastage
Saved = Produced
Can meet challenge beyond 2050

Reduce Food Waste
SAVE ENERGY
SAVE MONEY
SAVE THE PLANET

Change Your Diet - Change the World!
Per capita food losses and waste, at consumption and pre-consumptions stages, in different regions

Per capita food losses and waste at pre-consumption stage are higher in Asia and Latin America, about 200 kg/year
Contribution of each phase of the food supply chain to food wastage and carbon footprint

Carbon foot print waste of 37% at consumption with only 22% food wastage

Because it includes energy used for processing, storage and cooking
Carbon footprint of food wastage, by phase of the food supply chain with respective contribution of embedded life-cycle phases

GHG emissions are higher from agriculture are major contributors to carbon footprint in all stages. At consumption stage, GHG emissions play major role.
Carbon footprint of food wastage, by region and by commodity

Three foods, cereals, meat, vegetables contribute significantly to carbon footprint in all regions.
The irrigation story of India….

Since 1970s, groundwater irrigated area has increased, as has number of wells and tubewells.

Water for a food-secure world
Groundwater use buffers climate variability but mining it kills future options.

Source: Agricultural Census, GOI, several years
Number of Ground Water Structures - 1994

Total Number of Groundwater Structures: 11.5 Million

Legend:
- 1 Dot = 5,000 Wells & Tubewells
- No data

Source: 2nd MI Census, 1993
Number of Ground Water Structures - 2001

Number of Ground Water Structures, 2001

Legend
- 1 Dot = 5,000 Wells & Tube Wells
- No data

Total Number of Groundwater Structures: 18.5 Million

Source: 3rd MI Census, 2001
Sources of Irrigated Area in India (Ha)

- Ancient wisdom. Tanks played vital role in drought risk reduction, particularly in south for centuries- Tank and temple culture
- 4.24 lakh tanks irrigating about 46.518 lakh he. In south 1.20 lakh tanks - 28.0 lakh he. Tank irrigated area started falling after green revolution in mid 60s

<table>
<thead>
<tr>
<th>Period</th>
<th>Canal</th>
<th>Tank</th>
<th>Groundwater</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952-1953</td>
<td>8,613,000</td>
<td>3,468,000</td>
<td>6,339,000</td>
<td>2,588,000</td>
<td>21,008,000</td>
</tr>
<tr>
<td>1962-1963</td>
<td>10,568,000</td>
<td>4,651,000</td>
<td>7,430,000</td>
<td>2,420,000</td>
<td>25,069,000</td>
</tr>
<tr>
<td>1972-1973</td>
<td>12,983,000</td>
<td>3,822,000</td>
<td>12,377,000</td>
<td>2,313,000</td>
<td>31,495,000</td>
</tr>
<tr>
<td>1982-1983</td>
<td>15,808,000</td>
<td>3,165,000</td>
<td>18,593,000</td>
<td>2,406,000</td>
<td>39,972,000</td>
</tr>
<tr>
<td>1992-1993</td>
<td>17,247,000</td>
<td>2,817,000</td>
<td>25,884,000</td>
<td>3,114,000</td>
<td>49,062,000</td>
</tr>
<tr>
<td>1999-2000</td>
<td>17,609,000</td>
<td>2,916,000</td>
<td>32,536,000</td>
<td>3,223,000</td>
<td>56,284,000</td>
</tr>
</tbody>
</table>

Suitability of Tanks in Telangana

<table>
<thead>
<tr>
<th>Period</th>
<th>Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875</td>
<td>41,000</td>
</tr>
<tr>
<td>1920</td>
<td>1,39,511</td>
</tr>
<tr>
<td>1930</td>
<td>2,56,714</td>
</tr>
<tr>
<td>1940</td>
<td>3,73,684</td>
</tr>
<tr>
<td>1956-57</td>
<td>5,30,565</td>
</tr>
<tr>
<td>1970-72</td>
<td>3,30,920</td>
</tr>
<tr>
<td>1980-82</td>
<td>3,86,351</td>
</tr>
<tr>
<td>1990-92</td>
<td>3,80,319</td>
</tr>
<tr>
<td>2001-05</td>
<td>1,65,303</td>
</tr>
<tr>
<td>2005-09</td>
<td>2,18,124</td>
</tr>
</tbody>
</table>

- Telangana in rain shadow regions of India.
- Topography suitable to rain water harvesting using tanks.
- Satavahana, Kakatiya, Kutubshahis, Asafzadis constructed tanks.
- WEF nexus was very well addressed/droughts were managed.
- Loss in tank irrigation from 1956-57 to 2005-09 of 58% of 3,12,441 hectares (ha).
- Decrease of tank irrigation due to relative less importance of tanks vis-a-vis other modes of irrigation, as well as a decline in the actual area irrigated by them.

Source (unless stated): BES, various years.
Decline in Tank Irrigated Area in Telangana (Ha)

<table>
<thead>
<tr>
<th>Period</th>
<th>Tank</th>
<th>Canal</th>
<th>Well</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875</td>
<td>41,000</td>
<td>7,000</td>
<td>46,000</td>
<td>95,000</td>
</tr>
<tr>
<td>1901</td>
<td></td>
<td></td>
<td></td>
<td>3,04,423</td>
</tr>
<tr>
<td>1920</td>
<td>1,39,511</td>
<td>27,447</td>
<td>1,08,535</td>
<td>2,75,492</td>
</tr>
<tr>
<td>1930</td>
<td>2,56,714</td>
<td>61,700</td>
<td>1,77,980</td>
<td>4,96,394</td>
</tr>
<tr>
<td>1940</td>
<td>3,73,684</td>
<td>51,417</td>
<td>1,94,332</td>
<td>6,19,433</td>
</tr>
<tr>
<td>1956-57</td>
<td>5,30,565</td>
<td>1,16,619</td>
<td>1,29,869</td>
<td>8,01,586</td>
</tr>
<tr>
<td>1970-72</td>
<td>3,30,920</td>
<td>1,98,701</td>
<td>2,14,500</td>
<td>8,50,055</td>
</tr>
<tr>
<td>1980-82</td>
<td>3,86,351</td>
<td>2,81,843</td>
<td>3,41,400</td>
<td>10,34,487</td>
</tr>
<tr>
<td>1990-92</td>
<td>3,80,319</td>
<td>3,38,276</td>
<td>7,04,400</td>
<td>14,85,795</td>
</tr>
<tr>
<td>2001-05</td>
<td>1,65,303</td>
<td>1,62,315</td>
<td>9,74,470</td>
<td>13,44,604</td>
</tr>
<tr>
<td>2005-09</td>
<td>2,18,124</td>
<td>2,59,629</td>
<td>12,17,642</td>
<td>16,95,395</td>
</tr>
</tbody>
</table>

Source (unless stated): BES, various years.

- Irrigated area under all sources, peaked to 14,85,795 ha in 1990-92, declined to 13,44,604 ha in 2001-15 and then rose to 16,95,395 ha in 2005-09.
- This indicates a shift of primary from tank irrigation to well irrigation.
- Four advantages of tank irrigation and four reasons for decline in tank irrigation.
Chain link Tank System in Telangana

The chain link tank system mainly exists in Telangana State. The surplus water from upstream tank flows to downstream tank in the chain and every tank is having aycut of its own.

In the series of tanks every tank should be in good condition, if one tank is damaged it will effect total chain system of tanks in that chain.
Emergence of Mission Kakatiya

✓ After state was formed on 2 June 2014, priority was for irrigation sector.
✓ Geographical positioning for water harvesting in tanks which will drought mitigation apart from multiple functions like recharge of ground water.
✓ Census of minor irrigation sources – 46,531 all types of tanks
✓ These tanks were to irrigate 20 to 25 lakh acres Vs present 9 to 10 lakh acres
✓ The reasons in gap ayacut was found due to;
 • *Tank Bund*: Jungle growth on slopes, reduction of top width through erosion, erosion/scouring of slopes, free-board not conforming to design, gully formation on slopes, damaged stone revetment, seepages through bund etc.
 • *Surplus Weirs*: Damaged weir structures requiring redesign and reconstruction.
 • *Tank Sluices*: Damaged collapsed sluices, damaged/non-existent screw gear shutters (water controlling arrangement), damaged appurtenant works, silt deposits.
 • *Feeder Channels*: Carrying capacity reduced due to extensive jungle growth, erosion of banks, siltation, loss of profile and bed slopes.
 • *Due to dilapidated condition of Irrigation canals.*
✓ Loss of water storage capacity of tanks due to accumulation of silt in tank beds over a long period.
✓ we can add millions of hectares to irrigated land without building a new dams.
✓ Rulers of Kakatiya dynasty built more tanks, hence **Mission Kakatiya**
Objective of Mission Kakatiya

“to enhance the development of agriculture based income of small and marginal farmers through sustainable use of irrigation resources by restoration of Minor Irrigation sources, strengthening community based irrigation management, providing agricultural services, encouraging diversification and use of new technologies, facilitating market access”

Key performance indicators to study are:

✓ Increase in coverage of reliable minor irrigation facilities through surface and groundwater management

✓ Growth in agricultural productivity (including livestock, fisheries and horticulture) to meet food security in target areas

✓ Increase in the number of working days for agricultural labourers

✓ Increase in beneficiary household incomes.
Process of Mission Kakatiya

✓ De-silting the tank beds to restore original water storage capacity of tanks.
✓ Repairing and restoration of feeder Channels to standards for getting water freely into tanks. (Part of chain of tanks)
✓ Repairing dilapidated sluices, weirs etc.,
✓ Strengthening the tank bunds to its original standards.
✓ Re-sectioning of irrigation channels to standards & Repairs to CM & CD works for smooth distribution of water to fields according to their requirement.
✓ Raising of FTL, wherever possible.

It is planned to restore all 46,531 tanks in 5 years in a phased manner with 9,306 Tanks every year i.e 20% of total tanks each year.

The main purpose of Mission Kakatiya is to bring the lost gap ayauct of over 10 lakh acres.
Mission Kakatiya-Climate Adaptation

- Preparedness in terms of development of village / location - specific contingency plans
- Mitigation and adaptation through improvements and innovations in irrigation management
- Diversification of rural economy towards non-farm activities and fishing to reduce farm households’ excessive dependence on agriculture

Suitable modifications will be suggested like:

- Providing Village/Mandal specific meteorological forecasts
- Need for developing breeding of drought-tolerance varieties of crops
The Mission Kakatiya adopted a participatory approach

Gram Sabhas (Village meetings) were conducted and proposed works under Mission Kakatiya are explained to the villagers.

Farmers are motivated to lift the soil for field application.

District and local level coordination committees are formed.

The mission is can be considered as governance initiative within water, energy, food nexus as climate adaptation to help combat drought in mostly drought prone, rainfed Telangana state.
Thank You

(In the happiness of his public rests the king’s happiness, in their welfare his welfare. He shall not consider as good only that which pleases him but treat as beneficial to him whatever pleases his public.)

Kauttlya’s Arthashastra

Praja sukhe sukham rajyaha prajanamcha hitehitam,
Natma priyyam hitam rajanaha prajanam cha hitam priyam.