

Plant species responses to climate change: a review

Kflay Gebrehiwot

Addis Ababa University,
Department of Plant Biology and Biodiversity Management,
Addis Ababa, Ethiopia,
P.O.Box: 3434,
Email: kflay77@gmail.com

Article History

Received: 5 October 2016

Accepted: 27 October 2016

Published: January-March 2017

Citation

Kflay Gebrehiwot. Plant species responses to climate change: a review. Climate Change, 2017, 3(9), 6-19

Publication License

© The Author(s) 2017. Open Access. This article is licensed under a [Creative Commons Attribution License 4.0 \(CC BY 4.0\)](https://creativecommons.org/licenses/by/4.0/).

General Note

Article is recommended to print as color version in recycled paper. *Save Trees, Save Climate.*

ABSTRACT

Climate change is a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time period. Global warming influenced plant species response mechanisms including phenology shift; species range shift; diversity and interaction of communities; structure and dynamics of ecosystem or extinction. Highest phenology shift showed an advance of 5.3 ± 0.9 decade $^{-1}$;

and lowest phenology advancement was revealed to be 1.9 days decade⁻¹. The highest species range shift reported is 17.6km and 29.4±10.9m decade⁻¹ pole ward and towards higher elevation respectively; whereas the lowest showed to be 6.1±2.4 km and 1-4m decade⁻¹ pole ward and towards higher elevation respectively. Phenotypic plasticity is also crucial phenomenon which could help plant species respond to changing climate in situ.

Key Words: Climate change; Phenology shift; Phenotypic plasticity; Range shift

1. INTRODUCTION

Climate change is an alarming concern for both scientific community and layman. Because it fundamentally controls the distribution of ecosystems, species range and process rates on earth (Grimm et al., 2013). Climate change is defined by IPCC (2007a) as "*a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer which could happen either naturally or man-induced*".

The UNFCCC (1992) defined it differently as "*a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods*".

The increase in human population, which is more than 7 billion these days, and predicted to be above 10billion by 2050 (FAO 2015), is demanding extremely high resources. This leads to the overexploitation of natural resources (both renewable and non-renewable) and expansion of industries, causing climate change, is severely affecting the biodiversity in several ways (Gupta, 2015). However, IPCC (2007a) defends urbanization and land use system in global climate change contributes negligible impact, less than 0.006°C per decade over land and zero on the ocean.

The global climate is changing at an alarming rate in human history causing droughts and flooding, for example, which affects both the economy and ecosystem maintenance. It is not rational to deny the existence of climate change (CSCC 2001; IPCC 2007a) and is often perceived as human induced modification of the climate (Franklin et al., 2016). One of the major components of climate change is temperature. Even though it is not the sole determinant of climate change, it has a profound impact on climate change. Walther et al. (2002) stated that the Earth's climate has warmed by 0.6°C over the past 100 years and 10% decline in snow cover in the 1960s. It is terrifying that the Earth's temperature would, with uncertainty, increase by up to 7°C in the coming 100 years (IPCC 2007a). Hansen et al. (2016), reported that the global surface temperature in 2015 was +0.87°C (~1.6°F) warmer than the 1951-1980, making 2015 the warmest year in history. These phenomenon resulted in several changes including phenology (Cleland et al., 2007; Doi and Katano 2008; Sheridan and Bickford 2011); range of species distribution (Sheridan and Bickford 2011; Walther et al., 2002);

diversity and interaction of communities (Walther et al., 2002; Sheridan and Bickford 2011); structure and dynamics of ecosystem (Walther et al., 2002) or extinction (Barnosky *et al.*, 2011; Parmesan 2006). Apart from the interactions happening in the communities, species exhibit individual tolerance and adaptation mechanisms to climate change which could have broad scale disruption of ecological communities and trophic structures (Stralberg *et al.*, 2009). However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels (Walther 2010).

The objective of this paper is, thus, to review plant species response to climate change with special focus to: phenology (time), species range shift (space) and phenotypic plasticity.

2. PHENOLOGICAL SHIFT

Phenology is the seasonal pattern of activities, life histories, of an organism. It includes the critical stages of life cycles. The International Biological Program (IBP) defined phenology broadly as "*the study of the timing of recurrent biological events, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species*" (Lieth 1974). Phenological change in response to climate change is not uncommon in several taxonomic groups and life forms of plants (IPCC 2007b; Parmesan and Yohe 2003; Root et al., 2003).

Variation among species in phenology is vital in avoiding competition (Cleland et al., 2007) which could help them respond better to climate change because of temperature influence (Hansen et al., 2006). However, it has to be noticed plants can also respond to other environmental factors, for example seasonal variation in photoperiod (Edwards and Richardson 2004). Studies revealed that the highest phenological advance occurred in early spring (Cleland *et al.*, 2012; Parmesan and Yohe 2003). Monitoring studies tracking phenology changes due to climate change have been conducted by Root *et al.* (2003) and showed an average advance of 5.1 day per decade over the previous 30 or more years. Similarly, IPCC (2007b) reported that early spring has been advancing at a rate of 2.3-5.2 days per decade since the 1970s. Furthermore, Parmesan and Yohe (2003) reported 62% of the species in their study showed Spring phenology advancement whereas 9% phenology delays in Spring. Onset of autumnal phenological events were reported somewhere else, but these shifts are less pronounced and show a more heterogeneous pattern (Walther *et al.*, 2002), but could be noticeable as the globe is continuously warming. Menzel and Estrella (2001); and Menzel and Fabian (1999) in Europe reported leaf color changes shows an advance delay of 0.3 ± 1.6 days per decade and the length of growing season have increased by up to 3.6 days per decade over the past 50 years. Phenological shift due to warming could increase the primary productivity of an ecosystem (Bertin 2008), since longer growing season are more productive than shorter growing seasons (Lieth 1974). However, plants have to control the temperature induced resources limitations, e.g. water. Defila and Clot (2001) and Menzel (2003) also reported an advancement of 1.9 days decade $^{-1}$ and 1.6 days decade $^{-1}$ respectively. The estimated mean of days per

decade for all species in the study, 694 species, revealed that the change in spring phenology is 5.3 ± 0.9 (Root and Hughes 2005).

The interpretation of these changes is, however, not an easy task (Visser and Both 2005).

Phenological shifts are influenced by altitude (Defila and Clot 2001) and expected to be more sensitive at high latitudes as well (Root and Hughes 2005). The authors claimed phenological shifts were predominantly recoded at higher altitudes. Considering the phenological adaptability to changing temperature, however, all plant species don't respond the same way. In species 'non-responsive' to temperature, phonological behaviour is regulated by a variety of different genetically controlled mechanisms (Briggs 2009).

Even though Root and Hughes (2005) claimed that phenology shift is a short term primary response, it could influence several interactions in the community viz. plant pollinator interactions. Plant-pollinator mismatches were reported by several authors (Fabina *et al.*, 2010; Hagl and *et al.*, 2009). Different trophic levels may shift their phenology to different magnitudes, revealing asynchronies in timing within the ecological network (Walther 2010).

3. PLANT SPECIES RANGE SHIFTS, COMMUNITY COMPOSITION AND COMMUNITY RESHUFFLE

Climate is one of the determinant factors for species distribution. Species ranges shift due to climate change are determined by: abiotically limited relicts in which their distribution and physiological activities is constrained by lack of sufficient environmental variables related to climate change; biotically limited relicts in which biotic perturbations such as competition is minimal for climatic reasons; and biotically sustained relicts which require a host or mutualist limited to climate change for their existence (Hampe and Jump, 2011; Islam *et al.* 2016).

Since the mountains are predicted to be warmed by three times higher than the global average rate of warming recorded during the 20th century (Nogue's-Bravo *et al.*, 2007), the majority of researches on range shifts emphasizes on mountains (Cannone and Pignatti 2014; Grabherr *et al.*, 1994; Pauli *et al.*, 2007). This could be also the restricted movement of living organisms from mountains and pockets in extreme temperatures (Sgro *et al.*, 2011) which leads to extinction (Thomas *et al.*, 2004). Surprisingly, the majority of the researches on plant species response to climate change are also conducted in Europe and North America.

Several species are relocated from their native place without human assistance in response to climate change (Parmesan 2006). However, a particular species has a specific threshold of environmental variables for its phenology. The range of species and their composition has been changing due to several factors, mainly global climate change. The interspecific interactions within or between trophic levels has also a crucial impact on species range shifts (Lavergne *et al.*, 2010). However, species distribution is often influenced through species-specific physiological thresholds of temperature and precipitation tolerance (Hoffman 1997). The shift could be either pole wards or towards elevation (Chen *et al.*, 2011; Lenoir *et al.*, 2008; Parmesan 2006; Walther *et al.*, 2002). Long-

term monitoring studies revealed that changes in community plants composition might be attributed to climate change (Brooker 2010). Their existence, however, depends on their ability to respond to environmental changes individually or by the emergent properties they developed. Several external factors could also cause either upward or downward shifts (Brooker 2010; Grabherr *et al.*, 1994; Kullman 2001; Sturm *et al.*, 2001; Walther *et al.*, 2005) of species. Hughes (2000) point out that an increase of annual temperature of 3°C corresponds to a shift of approximately 300–400 km in latitude (in the temperate zone) or 500 m in elevation. Nonetheless, not all species respond similarly to climate change (Walther 2010).

Out of the 99 species in research of species range shift, Parmesan and Yohe (2003) reported 80% of them showed shifts in range distribution. The average pole ward (latitude) and upward (elevation) shift was 6.1 ± 2.4 km and 6.1m decade^{-1} respectively. Chen *et al.* (2011), however, reported 17.6km and 12.2m decade^{-1} latitudinal and elevation range shift respectively. Research in Southern California Santa Rosa Mountains (Kelly and Goulden 2008) found that the distribution of the dominant species rose by an average altitude of approximately 65m. Except the one species, *Agave deserti*, which shows a shift towards lower elevation by about 50m; the remaining species showed up ward shift by about 28–142m. Moreover, Wardle and Coleman (1992) recorded the advancement of treeline towards higher altitude in New Zealand. Grabherr *et al.* (1992) showed that the alpine plants in Europe shifted towards higher altitude by about 1–4m per decade due to global warming.

Lenoir *et al.* (2008) studied the upward shift of an assemblage of 171 plant species along elevation gradient against climate change. They reported most of the species, one third or $118/171$, shifted towards higher elevation with an average elevation of $29.4 \pm 10.9\text{m per decade}$. Whereas, $53/171$ species shifted their range to lower elevation. Moreover, they revealed that species that shifted the most are mountainous species, which have faster life history traits (shorter life cycle, faster maturation, and smaller sizes at maturity) than do species showing a reduced shift (trees and shrubs), as compared with ubiquitous species (Cannone and Pignatti 2014; Grabherr *et al.*, 1994; Pauli *et al.*, 2007) and increased their species composition. Even though it is very challenging to precisely explain observed upward shifts of plant species, it could be perhaps from either upward migration through dispersal of species from lower elevation belts and/or by resident species shifting upward Breshears *et al.* (2008); range filling (without any upward shift) performed by species dispersing from existing neighbor communities within the same elevation belt (Cannone and Pignatti 2014); or because of extinctions at low elevations or colonization at high elevations either at the margins of or within the species' range (Wilson and Gutiérrez 2012). Krosby *et al.* (2015) reported the species range shift overlap induced due to climate change. Consequently, species range shifts and the newly established communities could have an impact on the intra- and interspecific interactions that imply consequences for the functioning of ecosystems (Walther 2010). Several factors such as habitat destruction, agricultural expansion, urbanization and etc. may also influence species range shifts. Due to this reason organisms, may be forced to colonize a new area in which anthropogenic perturbation is minimal. Grytnes *et al.* (2014) showed that climate warming is not the dominant driving force for species range shift and have no significant relationships.

Unlike the researches on species response to climate change, literatures on plant community response to climate change are not extensive. Study on community response to climate in Vermon, USA by Pucko *et al.* (2011) revealed that species and community response don't follow constant pattern rather it is complex and tend to be idiosyncratic, which indicates communities would become increasingly divergent as the magnitude of climate change increase.

Considering biological diversity at broad scale level, biome integrity can be affected by changes in vegetation formations due to climate change (Bellard *et al.*, 2012). Shifting dominances of species within communities could happen, but also to the formation of non-analogue communities, where existing species will co-occur, but in new combinations (Walther 2010). The Millennium Ecosystem Assessment forecasts there may be irreversible shifts for 5–20% of Earths terrestrial ecosystems, in particular cool conifer forests, tundra, scrubland, savannahs and boreal forest (Sala *et al.*, 2005; Afunmilayo, 2016). The Sahel, for example, changed from tropical forest to grassland and then to dessert within few thousand years (Kropelin *et al.*, 2008). Lapola *et al.* (2009) predicted large portion of the world's largest remnant forest, Amazonian rainforest, could be converted to tropical savannah. Alpine and boreal forests are expected to expand northwards and shift their tree lines upwards at the expense of low stature tundra and alpine communities (Alo and Wang 2008). Grimm *et al.* (2013) reported the movement and growth of trees into adjacent Tundra.

According to Briggs (2009) special habitat requirement, invading the already occupied territory, co-evolved mutualism (pollinators and dispersal agents), and speed and rate of dispersal play a significant role in species range shift. He also stressed that the whole plant communities don't migrate; rather the migrant plant species will establish new plant community. This implies the present plant communities may dissociate as a result of plant migration in response to climate change.

Thus, species range shift and resulting community reorganizations have considerable impacts on the way species interact, and, through trophic interactions, imply consequences for the functioning of ecosystems. Hence, community reorganization will not only lead to a reshuffling of existing species; in times of global exchange of organisms but also 'new' species will arrive, mix in and compose novel assemblages, and thus contribute to modified ecological networks and alter ecosystem processes (Walther 2010).

4. CHANGE IN SIZE

Living organisms and communities respond to climate change in different ways. Responding through phenology and range shifts were discussed in the previous sections. In addition to the previously discussed responses, change in plant size is also other mechanism exhibited in by several taxon (Morris *et al.*, 2008; Sheridan and Bickford 2011). Climate change, as a result of increasing temperature, is influencing several living organisms, including plants, to shrink their size (Sheridan and Bickford 2011).

Studies revealed that plant species both under controlled treatment of higher temperature and drought showed reduced their size (Kim *et al.*, 2007; Parolin *et al.*, 2010). It is due to the failure to control the ever high temperature, and others, if any, plants size is

shrinking these days (Barber et al., 2000). Nevertheless, phenotypic plasticity plays a role in shifting size (Franks et al., 2013; Sheridan and Bickford 2011). Though it is predicted that smaller sized plants could dominate the terrestrial ecosystems, its ultimate consequences is not yet fully understood (Sheridan and Bickford 2011).

5. PHENOTYPIC PLASTIC RESPONSES

Besides the phenology, size shrinkage, and species range shift; plants also respond through a process called phenotypic plasticity (Anderson et al., 2012; Nicotra et al., 2010) in which range of phenotypes a single genotype can express as a function of its environment without changing their genetic constitution (Gienapp et al., 2008). This phenomenon, usually, evolves when the organisms face several abiotic and biotic conditions in their life time (Baythavong 2011). They can also adapt to the changes genetically through the process of evolution (Gienapp et al., 2008). It is, however, microevolution in which macroevolution was reported nowhere else.

Phenotypic plasticity could be, of course, adaptive or non-adaptive (Ford-Lloyd et al., 2014). If population can change genetically to adapt the ever changing climate, there could be a possibility of reducing risk of extinction (Sgro et al., 2011; Spielman et al., 2004). However, accurate measurement of plasticity is very challenging (Kingsolver et al., 2012) because the genetic underpinnings of most traits are not fully known yet (Anderson et al., 2014).

A phenotypic plasticity research on three species of *Patagonian* steppe grasses by Couso and Fernández (2012) revealed that the species which entertain more phenotypic plasticity the better to tolerate drought. Some authors, however, argue that the phenomenon of phenotypic plasticity doesn't happen in many species (Merila and Hendry 2014).

Briggs (2009) point out that under conditions of continuing climate change, it is highly likely that populations of species will reach the limits of their development adaptability and phenotypic plasticity, and organisms will be subjected to directional selection. "If a species is evolving in relation to climate at a time when major changes are occurring, then, in the simplest hypothesis, it might be expected to remain in the same geographical area without migrating" (Bradshaw and McNeilly 1991). This is analogous to species shift their range if they would become extinct if they stay in their original habitat. In his explicit review Briggs (2009) point out there is a micro evolutionary response against climate change.

Bradshaw and McNeilly (1991) argued that: "*Most species, but perhaps not all, are unable to evolve, or evolve sufficiently, to cope with all aspects of the climate change. Although species may be able to evolve to some extent, they are certainly not able to evolve enough, to all the different aspects, to be able to remain in their original habitats as climate changes; they will be forced to migrate. Then, if geographical features prevent migration, they will become extinct, for example as *Tsuga* and *Pterocarya* are in Europe.*

Donnelly *et al.* (2011) argued that adaptation to climate change is heritable. Researches on garden plants in Europe, for example *Populus*, revealed that the majority of the phenotypic variance in the phenology of the plants in study could be explained by heritability (Bradshaw and Stettler 1995). However, solid evidences are still lacking whether the phenological shifts are due to phenotypic plasticity or result of underlying genetic variability.

6. SPECIES EXTINCTION

Man-induced climate change, which could be considered as the sixth species mass extinction, is one of the major threats to biological diversity (Barnosky *et al.*, 2011; Hannah 2011; MEA 2005). Even though researches on climate-induced species extinction are scanty, its impact could be more severe than habitat destruction (Bellard *et al.*, 2012) which is the cause for the extinction of above 90% species assessed by IUCN Red List of Species. Thomas *et al.* (2004) claimed that out of the estimated 5 million terrestrial species, 18-34% species are at risk of extinction caused by climate change.

Thus, if species and communities are unable to withstand the ever changing climate through the previously mentioned ways and; we are unable to mitigate climate change; species extinction would be the worst in our history. The worst thing is the speed of climate change is faster than the response of species and communities to withstand the impact of climate change (Bellard *et al.*, 2012).

7. PERSONAL REFLECTION ON PLANT SPECIES RANGE SHIFT AND CONSERVATION PLANNING AND PRIORITIZING

It has been discussed previously that species shift their ranges if they fail to adapt in their native habitat. Hence, following the traditional (species level and site/habitat level) conservation approaches alone won't be successful. Now a day, there are several species distribution models (SDMs) which can predict the magnitude and direction of species range shift. Thus, conserving species where they currently exist is good; thinking conservation approaches where species will be in the future, as well as connections in the landscape between the two, however, would be the better.

REFERENCE

1. Afunmilayo O. 2016. Africa's Shrinking Forests: A peep into Nigerian situation and its implications on socio-economic development. *Climate Change*, 2(6), 93-103
2. Alo, C.A. and G.L. Wang, 2008. Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. *J. Geophys. Res. Biogeosci.*, 113:1-16.

3. Anderson, J.T., A.M. Panetta and T. Mitchell-Olds, 2012. Evolutionary and ecological responses to anthropogenic climate change. *Plant Physiology*, 160:1728–1740.
4. Anderson, J.T., M.R. Wagner, C.A. Rushworth, K.V.S.K. Prasad and T. Mitchell-Olds, 2014. The evolution of quantitative traits in complex environments. *Heredity*, 112:4–12.
5. Barber V.A., G.P. Juday and B.P. Finney, 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. *Nature*, 405:668–673.
6. Barnosky, A.D., N. Matzke, Tomiya *et al.*, 2011. Has the Earth's sixth mass extinction already arrived? *Nature*, 471: 51–57.
7. Baythavong, B.S., 2011. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. *The American Naturalist*, 178:75–87.
8. Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller and F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. *Ecology Letters*, 15:365–77.
9. Bertin, R.I. 2008. Plant Phenology and Distribution in Relation to Recent Climate Change. *The Journal of the Torrey Botanical Society*, 135:126–146.
10. Bradshaw, H.D. and R.F. Stettler, 1995. Molecular genetics of growth and development in *Populus*. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. *Genetics*, 139: 963–973.
11. Breshears, D.D., T.E. Huxman, H.D. Adams, C.B. Zou, and J.E. Davison, 2008. Vegetation synchronously leans upslope as climate warms. *PNAS*, 105:11591–11592.
12. Briggs, D., 2009. Plant microevolution and conservation in human-influenced ecosystems, Cambridge University press, Cambridge, UK.
13. Brooker, R.W., 2010. Plant Communities, plant–plant interactions, and climate change. In: Pugnaire, F.I. (ed.) Positive plant Interactions and community dynamics. CRC press, USA.
14. Cannone, N. and S. Pignatti, 2014. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes. *Climatic Change*, 123:201–214.
15. Chen, I-C., J.K. Hill, R. Ohlemüller, D.B. Roy and C.D. Thomas, 2011. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. *Science*, 333:1024–1026.
16. Cleland, E.E., J.M. Allen, Crimmins *et al.*, 2012. Phenological tracking enables positive species responses to climate change. *Ecology*, 93:1765–1771.
17. Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney and M.D. Schwartz, 2007. Shifting plant phenology in response to global change. *Trends in Ecology and Evolution*, 22:357–365.
18. Committee on the Science of Climate Change, 2001. Climate change science: an analysis of some key questions. National Academy Press Washington, D.C.

19. Couso, L.L. and R.J. Fernández, 2012. Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses. *Annals of Botany*, 110:849–857.
20. Defila, C. and B. Clot, 2001. Phytophenological trends in different seasons, regions and altitudes in Switzerland. In: Walther et al (Eds.) "Fingerprints" of climate change adapted behaviour and shifting Species Ranges, Springer, New York.
21. Doi, H. and I. Katano, 2008. Phenological timings of leaf budburst with climate change in Japan. *Agric. For. Meteorol.*, 148:512-516.
22. Donnelly, A., A. Caffarra, Diskin et al., 2011. Climate warming results in phenotypic and evolutionary changes in spring events: a mini-review. In: Hodkinson, et al (Eds.) Climate Change, Ecology and Systematics. Cambridge University Press, Cambridge, UK.
23. Edwards, M. and A.J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. *Nature*, 430:881–884.
24. Fabina, N.S., K.C. Abbott and R.T. Gilman, 2010. Sensitivity of plant–pollinator–herbivore communities to changes in phenology. *Ecological Modelling*, 221: 453–458.
25. FAO, 2015. Healthy soils are the basis for healthy food production', Rome, Italy.
26. Ford-Lloyd, B., J.M.M. Engels and M. Jackson, 2014. Genetic resources and conservation challenges under the threat of climate change. In: Jackson, M. et al. (Eds.) Plant genetic resources and climate change. CAB International, London, UK.
27. Franklin, J., J.M. Serra-Díaz, A.D. Syphard and H.M. Regan, 2016. Global change and terrestrial plant community dynamics. *PNAS*, 113:3725–3734.
28. Franks, S.J., J.J. Weber and S.N. Aitken, 2013. Evolutionary and plastic responses to climate change in terrestrial plant populations. *Evolutionary Applications*, 7:123-139.
29. Gienapp, P., C. Teplitsky, J.S. Alho, J.A. Mills and J. Merilä, 2008. Climate change and evolution: disentangling environmental and genetic responses. *Molecular Ecology*, 17:167–178.
30. Grabherr, G., M. Gottfried and H. Pauli, 1994. Climate effects on mountain plants. *Nature*, 369:448.
31. Grimm, N.B., F.S. Chapin III, Bierwagen et al., 2013. The impacts of climate change on ecosystem structure and function. *Frontiers in Ecology and the Environment*, 11:474–482.
32. Grytnes, J. Kapfer, G. Jurasiczki et al., 2014. Identifying the driving factors behind observed elevational range shifts on European mountains. *Global Ecology and Biogeography*, 23:876–884.
33. Gupta, P. 2015. Biodiversity of Larsemann Hills, Antarctica. *Climate Change*, 1(3), 174-183
34. Hampe, A. and A.S. Jump, 2011. Climate relicts: past, present, future. *Annu. Rev. Ecol. Evol. Syst.*, 42:313–33.

35. Hannah, L., 2011. Climate change biology. Elsevier, London, UK.
36. Hansen, J., M.Sato, R. Ruedy, K.Lo, D.W. LeaandM.Medina-Elizade, 2006. Global temperature change. *Proc. Natl. Acad. Sci. U.S.A.* 103: 14288–14293.
37. Hansen, J., M.Sato, R. Ruedy, G.A. Schmidtc and K. Lo, 2016. Global temperature in 2015', http://www.columbia.edu/~jeh1/mailings/2016/20160120_Temperature2015.pdf (Accessed 27 May 2016).
38. Hegland, S.J., A. Nielsen,A. Lazaro, A.L. Bjerknes and O. Totland, 2009. How does climate warming affect plant-pollinator interactions? *Ecol. Lett.*, 12: 184–195.
39. Hoffman, A.A. and P.A. Parsons, 1997. Extreme Environmental Change and Evolution. Cambridge University Press, Cambridge.
40. Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? *Trends in Ecology and Evolution*, 15:56–61.
41. Intergovernmental Panel on Climate Change, 2007a. Technical summary. Climate change: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK.
42. Intergovernmental Panel on Climate Change, 2007b. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment
- Report of the Intergovernmental Panel on Climate Change. Cambridge UP, Cambridge, UK.
43. Islam MS, Al. Imran M, Mandol S, Bhuyan MS. 2016. Restoration of saltmarsh as mitigative measure of climate change impact at Chittagong coastal area of Bangladesh. *Climate Change*, 2(8), 313-329
44. Kelly, A.E. andM.L. Goulden, 2008. Rapid Shifts in Plant Distribution with Recent Climate Change. *Proceedings of the National Academy of Sciences of the United States of America*, 105:11823-11826.
45. Kim, S.-H. D.C.Gitz, R.C.Sicher, J.T.Baker, D.J.Timlin and V.R.Reddy, 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO₂*Environ. Exp. Bot.*, 61:224–236.
46. Kingsolver, J.G., S.E.Diamond, A.M. Siepielski, and S.M. Carlson, 2012. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. *Evolutionary Ecology*, 26:1101–1118.
47. Kropelin, S., D. Verschuren and A.M. Lezine, 2008. Climate-driven ecosystem succession in the Sahara: the past 6000 years. *Science*, 320: 765-768.
48. Krosby,C.B. Wilsey, McGuire et al., 2015. Climate-induced range overlap among closely related species. *Nature Climate Change*, 5:883-887.
49. Kullman, L., 2001. 20th century climate warming and tree-limit rise in the Southern Scandes of Sweden. *Ambio*, 30: 72–80.

50. Lapola, D.M., M.D. Oyama and C.A. Nobre, 2009. Exploring the range of climate biome projections for tropical South America: the role of CO₂ fertilization and seasonality. *Global Biogeochem. Cycles*, 23:1–16.
51. Lavergne, S., N. Mouquet, W. Thuiller and O. Ronce, 2010. Biodiversity and Climate Change: Integrating Evolutionary and Ecological Responses of Species and Communities. *Annu. Rev. Ecol. Evol. Syst.*, 41: 321–50.
52. Lenoir, J., J.C. Gégout, P.A. Marquet, P. de Ruffray and H. Brisson, 2008. A Significant Upward Shift in Plant Species Optimum Elevation during the 20th Century. *Science, New Series*, 320: 1768–1771.
53. Lieth, H., 1974. Introduction to phenology and the modeling of seasonality. In: Lieth, H., (Ed.) *Phenology and Seasonality Modeling*. Springer Verlag, Berlin.
54. Lieth, H., 1975. Primary productivity in ecosystems: comparative analysis of global patterns. In: W.H. van Dobben and R.H. Lowe (Eds.) *Unifying concepts in ecology*, Junk. The Hague, Netherlands.
55. Menzel, A., 2003. Plant phenological anomalies in Germany and their relation to air temperature and NAO. *Climatic Change*, 57:243–263.
56. Menzel, A. and N. Estrella, 2001. Plant phenological changes. In: Walther *et al.* (Eds.) "Fingerprints" of climate change adapted behaviour and shifting Species Ranges. Springer, New York.
57. Menzel, A. and P. Fabian, 1999. Growing season extended in Europe. *Nature*, 397: 659.
58. Merila, J. and A.P. Hendry, 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. *Evolutionary Applications*, 7:1–14.
59. Millennium Ecosystem Assessment, 2005. *Ecosystems and human well-being: Biodiversity synthesis*. Washington DC: World Resources Institute.
60. Morris, W.F., C.A. Pfister, Tuliapurkar *et al.*, 2008. Longevity can buffer plant and animal populations against changing climatic variability. *Ecology*, 89:19–25.
61. Nicotra, A.B., O.K. Atkin, Bonser *et al.*, 2010. Plant phenotypic plasticity in a changing climate. *Trends in Plant Science*, 15:684–692.
62. Nogue's-Bravo, D., M.B. Araujo, J.P. Martinez-Rica and M.P. Errea, 2007. Exposure of global mountain systems to climate change. *Glob Environ Chang*, 17:420–428.
63. Parmesan, C., 2006. Ecological and Evolutionary Responses to Recent Climate Change. *Annual Review of Ecology, Evolution, and Systematics*, 37:637–669.
64. Parmesan, C. and G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. *Nature*, 421:37–42.
65. Parolin, P., C. Lucas, M.T.F. Piedade and F. Wittmann, 2010. Drought responses of flood-tolerant trees in Amazonian floodplains. *Ann. Bot.*, 105:129–139.

66. Pauli, H., M.Gottfried, K.Reiter, C. Kiettner and G. Grabherr, 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. *Global Change Biology*, 13:147–156.
67. Pucko, C., B.Beckage, T. Perkins and W.S. Keeton, 2011. Species shifts in response to climate change: Individual or shared responses. *Journal of the Torrey Botanical Society*, 138:156-176.
68. Root, T.L. and L. Hughes, 2005. Present and future phenological changes in wild plants and animals. In: Lovejoy, T.E. and L. Hannah, (Eds.) Climate change and biodiversity. TERI Press, New Delhi, India.
69. Root, T.L., T.J.Price, K.R.Hall, S.H. Schneider, C. Rosenzweig and J.A. Pounds, 2003. Finger prints of global warming on wild animals and plants. *Nature*, 421:57-60.
70. Sala, O.E., D. van Vuuren, Pereira et al., 2005. Biodiversity across Scenarios. In: Carpenter et al., (Eds.)Millenium Ecosystem Assessment, Ecosystems and Human Well-being: Scenarios assessment. Volume 2. Island press, Washington, DC.
71. Sgro, C.M., A.J. Lowe and A.A. Hoffmann, 2011. Building evolutionary resilience for conserving biodiversity under climate change. *Evolutionary Applications*, 4:326–337.
72. Sheridan, J.A. and D. Bickford, 2011. Shrinking body size as an ecological response to climate change. *Nature Climate Change*, 1: 401-406.
73. Spielman, D., B.W. Brook and R. Frankham, 2004. Most species are not driven to extinction before genetic factors impact them. *Proceedings of the National Academy of Sciences USA*, 101:15261– 15264.
74. Stralberg, D., D.Jongsomjit, Howell et al., 2009. Re-Shuffling of Species with Climate Disruption: A No Analog Future for California Birds? *PLoS ONE*, 4:1-8.
75. Sturm, M., C. Racine and K. Tape, 2001. Increasing shrub abundance in the Arctic. *Nature*, 411:546-547.
76. Thomas, C.D., A. Cameron, Green et al., 2004. Extinction risk from climate change. *Nature*, 427: 145–148.
77. United Nations Framework Convention on Climate Change, 1992. United Nations Frame work Convention on Climate Change, 1-33.
78. Visser, M.E. and C. Both, 2005. Shifts in phenology due to global climate change: the need for a yardstick. *Proceedings of the Royal Society*, 1-9.
79. Walther, G.-R., E. Post, P.Convey, A.Menzel, C.Parmesank, T.J.C.Beebee, J.Fromentin, O. Hoegh-Guldberg and F. Bairlein, 2002. Ecological responses to recent climate change. *Nature*, 416:389-395.
80. Walther, G.-R., 2010. Community and ecosystem responses to recent climate change. *Phil. Trans. R. Soc. B.*, 365: 2019–2024.
81. Walther, G.-R., S. Berger and M.T. Sykes, 2005. An ecological 'footprint' of climate change. *Proc. R. Soc. B.*, 272:1427-1432.

82. Wardle, P. and M.C. Coleman, 1992. Evidence for rising upper limits of four native New Zealand forest trees. *NZJ. Bot.*, 30:303±314.

83. Wilson, R.J. and D. Gutiérrez, 2012. Effects of Climate Change on the Elevational Limits of Species Ranges. In:Beever, E.A. and J.L. Belant, (Eds.) Ecological Consequences of Climate Change, Mechanisms, Conservation, and Management. CRC press, Boca Raton, New York.